Journal of the American Chemical Society
ARTICLE
’ ACKNOWLEDGMENT
Fox, D. J. Gaussian 09, revision A.1; Gaussian, Inc.: Wallingford, CT,
2009.
(25) Hirschi, J. S.; Takeya, T.; Hang, C.; Singleton, D. A. J. Am.
Chem. Soc. 2009, 131, 2397–2403.
(26) Anisimov, V.; Paneth, P. J. Math. Chem. 1999, 26, 75–86.
(27) Bell, R. P. The tunnel effect in chemistry; Chapman and Hall:
London, 1980.
(28) Kline, P. C.; Schramm, V. L. Biochemistry 1992, 31, 5964–5973.
(29) Schwartz, P. A.; Vetticatt, M. J.; Schramm, V. L. J. Am. Chem.
Soc. 2010, 132, 13425–13433.
This work was supported by NIH grant GM41916. The
authors thank Yong Zhang and Keith Hazleton for their kind
gifts of [3-15N]orotate and UMP synthase, respectively, and Dr.
Andrew S. Murkin and Dr. Luiz Pedro S. de Carvalho, respec-
tively, for insightful discussion about reverse commitment and
for critical reading of this manuscript.
’ REFERENCES
(1) Gao, G.; Nara, T.; Nakajima-Shimada, J.; Aoki, T. J. Mol. Biol.
1999, 285, 149–161.
(30) Prior, J. J.; Santi, D. V. J. Biol. Chem. 1984, 259, 2429–2434.
(31) Renck, D.; Ducati, R. G.; Palma, M. S.; Santos, D. S.; Basso, L. A.
Arch. Biochem. Biophys. 2010, 497, 35–42.
(32) Northrop, D. B. Annu. Rev. Biochem. 1981, 50, 103–131.
(33) Cleland, W. W. Methods Enzymol. 1982, 87, 625–641.
(34) Schramm, V. L. Methods Enzymol. 1999, 308, 301–355.
(35) Murkin, A. S.; Birck, M. R.; Rinaldo-Matthis, A.; Shi, W.;
Taylor, E. A.; Almo, S. C.; Schramm, V. L. Biochemistry 2007,
46, 5038–5049.
(36) Luo, M.; Li, L.; Schramm, V. L. Biochemistry 2008, 47,
2565–2576.
(37) Li, L.; Luo, M.; Ghanem, M.; Taylor, E. A.; Schramm, V. L.
Biochemistry 2008, 47, 2577–2583.
(2) Miller, R. L.; Sabourin, C. L.; Krenitsky, T. A.; Berens, R. L.;
Marr, J. J. J. Biol. Chem. 1984, 259, 5073–5077.
(3) Larson, E. T.; Mudeppa, D. G.; Gillespie, J. R.; Mueller, N.;
Napuli, A. J.; Arif, J. A.; Ross, J.; Arakaki, T. L.; Lauricella, A.; Detitta, G.;
Luft, J.; Zucker, F.; Verlinde, C. L.; Fan, E.; Van Voorhis, W. C.; Buckner,
F. S.; Rathod, P. K.; Hol, W. G.; Merritt, E. A. J. Mol. Biol. 2010,
396, 1244–1259.
(4) Paege, L. M.; Schlenk, F. Arch. Biochem. Biophys. 1952, 40,
42–49.
(5) Pizzorno, G.; Cao, D.; Leffert, J. J.; Russell, R. L.; Zhang, D.;
Handschumacher, R. E. Biochim. Biophys. Acta 2002, 1587, 133–144.
(6) Vita, A.; Huang, C. Y.; Magni, G. Arch. Biochem. Biophys. 1983,
226, 687–692.
(7) Pugmire, M. J.; Ealick, S. E. Biochem. J. 2002, 361, 1–25.
(8) Westheimer, F. H. Chem Rev 1961, 61, 265–273.
(9) Sims, L. B.; Fry, A.; Netherton, L. T.; Wilson, J. C.; Reppond,
K. D.; Crook, S. W. J. Am. Chem. Soc. 1972, 94, 1364–1365.
(10) McCann, J. A.; Berti, P. J. J. Am. Chem. Soc. 2007, 129,
7055–7064.
(38) Cleland, W. W. Arch. Biochem. Biophys. 2005, 433, 2–12.
(39) Northrop, D. B. Biochemistry 1975, 14, 2644–2651.
(40) For this reaction, the computationally predicted 15Keq = 1.007.
Rearranging eq 7 to solve for 15k, one obtains 15k = 15(V/K) ꢁ [1 þ Cf] ꢀ
15
Cf þ [15(V/K) ꢀ Keq] ꢁ Cr, where the terms containing the cor-
rections for Cf and Cr are explicitly separated. Substituting in the values
found in this work, 15k = 1.024 ꢁ [1 þ 0.283] ꢀ 0.283 þ [1.024 ꢀ
1.007] ꢁ Cr, which is then further reduced to 15k = 1.030 þ 0.017 ꢁ Cr.
Because the maximum calculated 1-15N KIE on the arsenolysis of uridine
equals 15k, within experimental error, following correction for Cf, and Cr
cannot assume negative values, it is clear that the only possible value for
Cr is 0.
(11) Kline, P. C.; Schramm, V. L. Biochemistry 1993, 32, 13212–13219.
(12) Singh, V.; Schramm, V. L. J. Am. Chem. Soc. 2006, 128,
14691–14696.
(41) Guthrie, R. D.; Jencks, W. P. Acc. Chem. Res. 1989, 22, 343–349.
(42) Berti, P. J.; McCann, J. A. Chem Rev 2006, 106, 506–555.
(43) Berti, P. J.; Blanke, S. R.; Schramm, V. L. J. Am. Chem. Soc. 1997,
119, 12079–12088.
(13) Berti, P. J.; Schramm, V. L. J. Am. Chem. Soc. 1997, 119,
12069–12078.
(14) Zhang, Y.; Luo, M.; Schramm, V. L. J. Am. Chem. Soc. 2009,
131, 4685–4694.
(44) Hehre, W. J. Acc. Chem. Res. 1975, 8, 369–376.
(45) Cook, P. F.; Cleland, W. W. Biochemistry 1981, 20, 1790–1796.
(46) Lewandowicz, A.; Schramm, V. L. Biochemistry 2004, 43,
1458–1468.
(47) Silva, R. G.; Hirschi, J. S.; Ghanem, M.; Murkin, A. S.; Schramm,
V. L. Biochemistry 2011, 50, 2701–2709.
(48) Werner, R. M.; Stivers, J. T. Biochemistry 2000, 39, 14054–14064.
(49) Komissarov, A. A.; Moltchan, O. K.; Romanova, D. V.; Debabov,
V. G. FEBS Lett. 1994, 355, 192–194.
(15) Schwartz, P. A.; Vetticatt, M. J.; Schramm, V. L. Biochemistry
2011, 50, 1412–1420.
(16) Cen, Y.; Sauve, A. A. J. Am. Chem. Soc. 2010, 132, 12286–12298.
(17) Miles, R. W.; Tyler, P. C.; Furneaux, R. H.; Bagdassarian, C. K.;
Schramm, V. L. Biochemistry 1998, 37, 8615–8621.
(18) Singh, V.; Shi, W.; Evans, G. B.; Tyler, P. C.; Furneaux, R. H.;
Almo, S. C.; Schramm, V. L. Biochemistry 2004, 43, 9–18.
(19) Singh, V.; Lee, J. E.; Nunez, S.; Howell, P. L.; Schramm, V. L.
Biochemistry 2005, 44, 11647–11659.
(50) Fedorov, A.; Shi, W.; Kicska, G.; Fedorov, E.; Tyler, P. C.;
Furneaux, R. H.; Hanson, J. C.; Gainsford, G. J.; Larese, J. Z.; Schramm,
V. L.; Almo, S. C. Biochemistry 2001, 40, 853–860.
(51) Pauling, L. J. Am. Chem. Soc. 1947, 69, 542–553.
(52) Houk, K. N.; Gustafson, S. M.; Black, K. A. J. Am. Chem. Soc.
1992, 114, 8565–8572.
(53) Schramm, V. L. Annu. Rev. Biochem. 1998, 67, 693–720.
(54) Zhang, Y.; Schramm, V. L. J. Am. Chem. Soc. 2010, 132,
8787–8794.
(55) Berti, P. J.; Tanaka, K. S. E. Adv. Phys. Org. Chem. 2002, 37,
239–314.
(56) Chen, X. Y.; Berti, P. J.; Schramm, V. L. J. Am. Chem. Soc. 2000,
122, 6527–6534.
(20) Parkin, D. W.; Leung, H. B.; Schramm, V. L. J. Biol. Chem. 1984,
259, 9411–9417.
(21) Laemmli, U. K. Nature 1970, 227, 680–685.
(22) Miller, R. L.; Lindstead, D. Mol. Biochem. Parasitol. 1983,
7, 41–51.
(23) Rose, I. A. Methods Enzymol. 1980, 64, 47–59.
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;
Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K.
N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;
Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich,
(57) Gawlita, E.; Szylhabel-Godala, A.; Paneth, P. J. Phys. Org. Chem.
1996, 9, 41–49.
€
S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.;
9931
dx.doi.org/10.1021/ja2031294 |J. Am. Chem. Soc. 2011, 133, 9923–9931