derivatives have been used to improve the power conver-
sion efficiency of DSSCs and significant improvements
have been achieved.13cÀe Triazatruxene in which three
carbazole units share one benzene ring, compared to a
single carbazole system, has an enlarged π-system and may
therefore increase the electron donating ability of the D-π-
A type dye.12 So we present the D-π-A type dyes consisting
of a triazatruxene moiety acting as the electron donor and
2-cyanoacylic acid acting as the electron acceptor/anchoring
group. Aromatic rings such as thiophene, furan, and benzene
have been selected to act as the π-conjugated linkers and
resulted in sensitzers TD1, TD2, and TD3, respectively. The
molecular structures of these dyes are shown in Figure 1. The
syntheses of these dyes involved two major steps: (1) Suzuki
cross-coupling of brominated triazatruxene and substituted
aromatic aldehydes produced the π-extended triazatruxene
bearing aldehydes; (2) Knoevenagel reaction of the resulting
aldehydes and cyanoacetic acid afforded the target sensitizers
TD1À3. Details of the synthesis are shown in Scheme 1.
Figure 1. Structures of the triazatruxene-based dyes TD1À3.
potential for intramolecular charge transfer.7,8 Owing to
its unique discotic π-extended and electron-rich aromatic
structure, this C3 symmetric fused indole trimer has been
widely used to produce electroactive discotic liquid-
crystalline materials,9 hole transporting materials with high
hole mobility,10 organic-light-emitting diodes (OLEDs),11
and two-photon absorption (TPA) materials.8,12 However,
to the best of our knowledge, there are no reports about the
application in dye-sensitized solar cells. Inspired by its
proven strong intramolecular charge transfer characteristic,
synthetic flexibility, and high stability, we report herein the
design, synthesis, and characterization of a series of new
organic sensitizers based on triazatruxene.
Scheme 1. Synthetic Procedures of TD1À3
Figure 2. UVÀvis absorption spectra of TD1À3 in THF and on
TiO2 films (inset).
The UVÀvis absorption spectra of TD1À3 are depicted
in Figure 2. The data for the absorption, electrochemical
properties, and frontier orbital energy levels are summar-
ized in Table 1. Each of these organic dyes exhibits two
major absorption bands at 280À350 and 400À550 nm in
THF solution. The short wavelength bands can be as-
signed to the localized aromatic πÀπ* transitions, while
(10) (a) Talarico, M.; Termine, R.; Garcı
´
a-Frutos, E. M.; Omenat,
A.; Serrano, J. L.; Gomez-Lor, B.; Golemme, A. Chem. Mater. 2008, 20,
6589. (b) Garcıa-Frutos, E. M.; Gutierrez-Puebla, E.; Monge, M. A.;
Ramırez, R.; de Andres, P.; de Andres, A.; Ramı
Org. Electron. 2009, 10, 643.
(11) (a) Lai, W.-Y.; Zhu, R.; Fan, Q.-L.; Hou, L.-T.; Cao, Y.; Huang,
W. Macromolecules 2006, 39, 3707. (b) Lai, W.-Y.; He, Q.-Y.; Zhu, R.;
Chen, Q.-Q.; Huang, W. Adv. Funct. Mater. 2008, 18, 265.
(12) Shao, J.; Guan, Z.; Yan, Y.; Jiao, C.; Xu, Q.-H.; Chi, C. J. Org.
Chem. 2011, 76, 780.
(13) (a) Yan, K.; Lu, X.; Qiu, Y.; Liu, Z.; Sun, J.; Yan, F.; Guo, W.;
Yang, S. Org. Lett. 2012, 14, 2214. (b) Tingare, Y. S.; Shen, M.-T.; Su,
C.; Ho, S.-Y.; Tsai, S.-H.; Chen, B.-R. Org. Lett. 2013, 15, 4292. (c)
Koumura, N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara,
K. J. Am. Chem. Soc. 2006, 128, 14256. (d) Baheti, A.; Thomas, K. R. J.;
Lee, C.-P.; Ho, K.-C. Chem.;Asian J. 2012, 7, 2942. (e) Venkateswararao,
A.; Thomas, K. R. J.; Lee, C.-P.; Ho, K.-C. Tetrahedron Lett. 2013, 54,
3985.
ꢀ
´
ꢀ
ꢀ
ꢀ
´
rez, R.; Gomez-Lor, B.
´
The donor-π-acceptor (D-π-A) structure has been com-
monly involved in most organic dyes owing to its efficient
intramolecular charge transfer (ICT) characteristic, which
is important for light harvesting.13 The excited state gen-
erated by an ICT transition from donor to acceptor is
responsible for the injection into the conduction band of
the semiconductors.14 Recently, the D-π-A type carbazole
ꢀ
(9) (a) Gomez-Lor, B.; Alonso, B.; Omenat, A.; Serrano, J. L. Chem.
Commun. 2006, 5012. (b) Luo, J.; Zhao, B.; Shao, J.; Lim, K. A.; Chan,
H. S. O.; Chi, C. J. Mater. Chem. 2009, 19, 8327. (c) Zhao, B.; Liu, B.;
Png, R. Q.; Zhang, K.; Lim, K. A.; Luo, J.; Shao, J.; Ho, P. K. H.; Chi,
C.; Wu, J. Chem. Mater. 2010, 22, 435.
(14) Labat, F.; Bahers, T. L.; Ciofini, I.; Adamo, C. Acc. Chem. Res.
2012, 45, 1268.
Org. Lett., Vol. 15, No. 23, 2013
6035