Table 3. Coupling Products from Aryl Iodides with Aryl- and
Alkyl-alkynes
Figure 1. Possible working mechanism for the palladium-free
Sonogashira reaction.
intermediate (2). The latter would react by oxidative addition
with the aromatic halide to form a four-coordinated cop-
per(III) complex from which the cross-coupling product is
expelled and the catalytic active species is reformed by
reductive elimination. Note that the copper(III) intermediate
could be of neutral (3) or cationic (4) type.
Thus, we have discovered a mild and efficient catalysis
of Sonogashira-type reactions using an easily handled Cu/
ligand combination. This method is applicable to a wide
range of variously substituted aryl iodides for coupling
to both alkyl- and aryl-substituted terminal alkynes. This
novel catalytic system is tolerant, versatile, and signifi-
cantly less expensive than “traditional” Pd-Cu-catalyzed
(4) Sonogashira-type coupling catalyzed by copper, see: (a) Okuro, K.;
Furuune, M.; Enna, M.; Miura, M.; Nomura, M. J. Org. Chem. 1993, 58,
4716. (b) Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001,
3, 4315. (c) Thathagar, M. B.; Beckers, J.; Rothenberg, G. Green Chem.
2004, 6, 215. (d) Ma, D.; Liu, F. Chem. Commun. 2004, 1934. (e) Wang,
Y. F.; Deng, W.; Liu, L.; Guo, Q. X. Chin. Chem. Lett. 2005, 16, 1197. (f)
Saejueng, P.; Bates, C. G.; Venkataraman, D. Synthesis 2005, 1706. (g)
Xie, Y.-X.; Deng, C.-L.; Pi, S.-F.; Li, J.-H.; Yin, D.-L. Chin. J. Chem.
2006, 24, 1290. (h) Colacino, E.; Da¨ıch, L.; Martinez, J.; Lamaty, F. Synlett
2007, 1279. (i) Guo, S.-M.; Deng, C.-L.; Li, J.-H. Chin. Chem. Lett. 2007,
18, 13. (j) Li, J.-H.; Li, J.-L.; Wang, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang,
M.-B.; Hu, X.-C. J. Org. Chem. 2007, 72, 2053.
a Reaction conditions for entries 1-14: aryl iodides (2.2 mmol),
phenylacetylene or hexyne (2 mmol), [Cu(acac)2] (0.2 mmol), L7 (0.6
mmol), base (4 mmol), 4 mL of DMF. b Isolated yields.
(5) For reviews on the Sonogashira reaction: (a) Doucet, H.; Hierso,
J.-C. Angew.Chem., Int. Ed. 2007, 46, 834. (b) Chinchilla, R.; Najera, C.
Chem. ReV. 2007, 107, 874. (c) Negishi, E.-I.; Anastasia, L. Chem. ReV.
2003, 103, 1979.
(entries 9-14) to afford the desired products in moderate to
excellent yields. With the exception of work reported by
Ma,4d ours is the only efficient system under such mild
conditions (90-120 °C) compared to the harsher conditions
of 130-150 °C employed by other groups.4a–c,e–j
Concerning the mechanism, it is worth noting that in
copper-catalyzed Ullmann arylations few studies have been
performed.2b,c,8 In our case, we can only present a working
mechanism for this palladium-free Sonogashira reaction
(Figure 1).4a,g On the basis of previous studies, it seems
reasonable to propose copper(I) as a catalytic species (1),
with a ligand of diketone type coordinated to the metal. In
a first step, in the presence of base, the coordination/
deprotonationofthealkynecouldthengiveacopper(I)-acetylide
(6) For a review on acetylenic coupling, see: Siemsen, P.; Livingston,
R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632.
(7) Diketones used as a ligand in Ullmann-catalyzed reaction were
successfully described in C-N formation. See: (a) Shafir, A.; Buchwald,
S. L. J. Am. Chem. Soc. 2006, 128, 8742. (b) de Lange, B.; Lambers-
Verstappen, M. H.; Schmieder-van de Vondervoort, L.; Sereinig, N.; de
Rijk, R.; de Vries, A. M.; de Vries, J. G. Synlett 2006, 3105. Diketones
were also used as ligands in Ullmann-type reactions for the formation of
C-O and C-C bonds. (c) Taillefer, M.; Xia, N.; Ouali, A. US 2006. 60/
818,334 and PCT 001836, 2007. (d) Xia, N.; Taillefer, M. US patent
60996830, 2007. (e) Taillefer, M.; Xia,N. Chem. Eur. J. 2008,DOI: 10/
1002/chem.200800436.
(8) (a) Streiter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem.
Soc. 2005, 127, 4120. (b) Zhang, S.-L.; Liu, L.; Fu, Y.; Guo, Q.-X.
Organometallics 2007, 26, 4546. (c) Altman, R. A.; Koval, E. D.; Buchwald,
S. L. J. Org. Chem. 2007, 72, 6190.
Org. Lett., Vol. 10, No. 15, 2008
3205