Helvetica Chimica Acta – Vol. 98 (2015)
1093
min): 4 (t 19.0 min; 90 mg) and 7 (t 21.2 min; 73 mg). Fr. H4 (29 mg) was purified by prep. HPLC (RP-
R
R
C ; MeOH/H O 40 :60; 2 ml/min): 6 (t 19.2 min; 7 mg) and 8 (tR 26.1 min; 8 mg).
18
2
R
Linderanoside A (¼(þ)-(7’S,8R,8’R)-Lyociresinol 9’-O-a-l-Arabinofuranoside; ¼ [(1S,2R,3R)-
1
,2,3,4-Tetrahydro-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-2-
25
naphthalenyl]methyl a-l-Arabinofuranoside; 1). Amorphous gum. [a]D ¼ þ20.0 (c ¼ 0.30, MeOH). UV
(
1
5
MeOH): 228 (4.1), 284 (3.2). CD (MeOH): 242 (þ 32.5), 272 (þ 5.9), 287 (À2.2). IR (KBr): 3385, 2924,
1 13
611, 1513, 1462, 1221, 1113, 670. H- (700 MHz) and C-NMR (175 MHz): see Table. HR-FAB-MS:
þ
þ
12
75.2104 ([M þ Na] , C H NaO ; calc. 575.2104).
27
36
Linderanoside B (¼(þ)-(7’S,8S,8’S)-Lyociresinol 9’-O-b-d-Xylopyranoside; ¼ [(1S,2S,3S)-1,2,3,4-
Tetrahydro-7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-6,8-dimethoxy-2-naphtha-
lenyl]methyl b-d-Xylopyranoside; 2). Amorphous gum. [a]2 ¼ þ108.0 (c ¼ 0.35, MeOH). UV (MeOH):
5
D
2
1
(
25 (4.0), 284 (3.1). CD (MeOH): 247 (þ100.1), 272 (þ44.2), 287 (À4.8). IR (KBr): 3423, 2924, 1641,
1 13
548, 1501, 1218, 1113, 673. H- (700 MHz) and C-NMR (175 MHz): see Table. HR-FAB-MS: 575.2104
þ
þ
12
[M þ Na] , C H NaO ; calc. 575.2104).
27
36
Linderanoside C (¼(7R,8S)-3,3’,5-Trimethoxy-4’,7-epoxy-8,5’-neolignan-4,9,9’-triol 9-b-d-Xylopyr-
anoside; ¼ [(2R,3S)-2,3-Dihydro-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-
5
3
(
1
-benzofuranyl]methyl b-d-Xylopyranoside; 3). Amorphous gum. [a]2 ¼ À6.0 (c ¼ 0.30, MeOH). UV
D
MeOH): 210 (4.3), 288 (3.2). CD (MeOH): 216 (þ6.1), 233 (À6.2), 291 (À2.9). IR (KBr): 3385, 2924,
1 13
611, 1548, 1501, 1462, 1216, 1117, 1033, 673. H- (700 MHz) and C-NMR (175 MHz): see Table. HR-
þ
þ
11
FAB-MS: 545.1998 ([M þ Na] , C H NaO ; calc. 545.1999).
2
6
34
Acid Hydrolysis of Compound 1 – 3. Compounds 1 – 3 (each 1 mg) were hydrolyzed by 1n HCl
(
dioxane/H O 1:1, 2 ml) under reflux for 2 h. After cooling, the mixture was diluted with H O and
2
2
extracted with CHCl . The CHCl3 was removed under reduced pressure to give lyoniresinol (5),
3
polystachyol (2a), and (7R,8S)-3,3’,5-trimethoxy-4’,7-epoxy-8,5’-neolignan-4,9,9’-triol (3a). The struc-
tures were identified by 1H-NMR and comparing these data with those reported in the literature
[
15][17][19].
Lyoniresinol (¼(6R,7R,8S)-5,6,7,8-Tetrahydro-8-(4-hydroxy-3,5-dimethoxyphenyl)-6,7-bis(hydroxy-
methyl)-1,3-dimethoxynaphthalen-2-ol; 5). Amorphous gum. 1H-NMR (CD OD, 700 MHz): 6.60 (s,
3
HÀC(2’)); 6.41 (s, HÀC(2,6)); 4.32 (d, J ¼ 5.5, CH (7)); 3.87 (s, MeOÀC(3’)); 3.75 (s, MeOÀC(3,5)); 3.61
2
(
2
(
dd, J ¼ 10.0, 5.0, H ÀC(9’)); 3.50 (overlap, H ÀC(9’)); 3.50 (d, J ¼ 5.0, CH (9)); 3.40 (s, MeOÀC(5’));
a
b
2
.72 (dd, J ¼ 15.0, 5.0, H ÀC(7’)); 2.59 (dd, J ¼ 15.0, 11.0, H ÀC(7’)); 2.00 – 1.98 (m, HÀC(8)); 1.66 – 1.62
a
b
m, HÀC(8’)).
Polystachyol (¼(6S,7S,8S)-5,6,7,8-Tetrahydro-8-(4-hydroxy-3,5-dimethoxyphenyl)-6,7-bis(hydroxy-
methyl)-1,3-dimethoxynaphthalen-2-ol; 2a). Amorphous gum. 1H-NMR (CD OD, 700 MHz): 6.60 (s,
3
HÀC(2’)); 6.41 (s, HÀC(2,6)); 4.60 (d, J ¼ 4.4, CH (7)); 3.87 (s, MeOÀC(3’)); 3.76 (s, MeOÀC(3,5)); 3.61
2
(
dd, J ¼ 10.0, 5.0, H ÀC(9’); 3.62 – 3.58 (m, H ÀC(9’)); 3.50 (d, J ¼ 5.0, CH (9)); 3.27 (s, MeOÀC(5’)); 3.00
a
b
2
(
dd, J ¼ 17.0, 5.7, H ÀC(7’)); 2.67 (dd, J ¼ 17.0, 11.3, H ÀC(7’)); 2.04 – 2.00 (m, HÀC(8)); 2.01 – 1.98 (m,
a
b
HÀC(8’)).
(
7R,8S)-3,3’,5-Trimethoxy-4’,7-epoxy-8,5’-neolignan-4,9,9’-triol (¼4-[(2R,3S)-2,3-Dihydro-3-(hy-
droxymethyl)-5-(3-hydroxypropyl)-7-methoxy-1-benzofuran-2-yl]-2,6-dimethoxyphenol; 3a). Amor-
1
phous gum. H-NMR (CD OD, 700 MHz): 6.76 (s, HÀC(6’)); 6.75 (s, HÀC(2’)); 6.70 (s, HÀC(2,6));
3
5
3
1
.53 (d, J ¼ 6.2, HÀC(7)); 3.89 (s, MeOÀC(3’)); 3.89 – 3.85 (m, H ÀC(9)); 3.84 (s, MeOÀC(3,5)); 3.85 –
a
.82 (m, H ÀC(9)) 3.59 (t, J ¼ 6.5, CH (9’)); 3.51 – 3.48 (m, HÀC(8)); 2.65 (t, J ¼ 7.7, CH (7’)); 1.86 –
b
2
2
.82 (m, CH (8’)).
2
Determination of the Sugars of Compounds 1 – 3. Each layer was neutralized by passage through an
Amberlite IRA-67 column and was evaporated under reduced pressure to give the sugar fraction. The
sugars obtained from hydrolysis were dissolved in anh. pyridine (0.5 ml) followed by adding of l-cysteine
methyl ester hydrochloride (2 mg; Sigma, St. Louis, MO). The mixture was stirred at 608 for 1.5 h. After
the mixture was dried in vacuo, the residue was trimethylsilylated with 1-trimethylsilylimidazole (0.1 ml;
Sigma, St. Louis, MO) for 2 h. The mixture was partitioned between hexane and H O (1 ml, each), and
2
the org. layer (1 ml) was analyzed by gas chromatography (GC) [26]. Identification of l-arabinose and d-
xylose for 1, 2, and 3 was performed in each case by co-injection of the hydrolysate with derivatized
standard sugars, giving single peaks at l-arabinose (5.39 min) for 1 and d-xylose for 2 and 3 (5.55 and