Biochemistry
Rapid Report
Figure 6. Partial sequence alignment (GeneDoc) of MIO-dependent enzymes. Conserved residues (highlighted in purple) are catalytic Tyr, Arg
(binds the carboxylate of the substrate), and the Ala/Thr-Ser-Gly triad (form the MIO cofactor). Isosterically similar residues in the active site of
MIO catalysts (highlighted in green) and residues near the para carbon of the substrate in TcPAM (highlighted in red) and OsTAM (highlighted in
yellow). Residues proposed as being key for substrate selectivity are bold and boxed. Identical residues shared in 10 of the 13 sequences (highlighted
Notes
wild-type aminomutase that uses both α-phenylalanine and α-
tyrosine as substrates.
The authors declare no competing financial interest.
This study adds information about the mechanisms of
catalysis of MIO-dependent aminomutases. Here, we find, like
two other TAMs (CcTAM and SgTAM), OsTAM catalyzes a
mixture of (R)- and (S)-β-tyrosine, but with very high
enantioselectivity (∼97%) for the R isomer. By contrast,
three other bacterial TAMs are reported to catalyze exclusively
the (S)-β-amino acid.5,17 The enantiomeric ratio catalyzed by
OsTAM is virtually unaltered by pH and reaction progress,
unlike those of bacterial SgTAM and CcTAM, whose R:S ratios
vary over time.7,8,12 This investigation provides a basis to begin
inquiry into how the rice OsTAM restricts its enantioselectivity.
Further, after defining the absolute stereochemistry and using
2H-labeled tyrosines, we showed that the OsTAM mechanism
principally retains the configuration at Cα and Cβ after the
isomerization. This reaction pathway is similar to the
mechanism followed by TcPAM, also from a plant. The unique
active site residues of OsTAM are more permissive than those
in TcPAM and allow OsTAM to turn over two aromatic amino
acids, although with a substantial preference for tyrosine. As
more MIO aminomutases are discovered and their cryptic
stereochemistries examined, a new subdivision of MIO-
dependent enzymes that distinguishes plant aminomutases
from those in bacteria might emerge.
ACKNOWLEDGMENTS
We thank undergraduate Devinda Wijewardena for his
technical assistance.
■
REFERENCES
■
(1) Ratnayake, N. D., Wanninayake, U., Geiger, J. H., and Walker, K.
D. (2011) J. Am. Chem. Soc. 133, 8531−8533.
(2) Magarvey, N. A., Fortin, P. D., Thomas, P. M., Kelleher, N. L.,
and Walsh, C. T. (2008) ACS Chem. Biol. 3, 542−554.
(3) Mutatu, W., Klettke, K. L., Foster, C., and Walker, K. D. (2007)
Biochemistry 46, 9785−9794.
(4) Christianson, C. V., Montavon, T. J., Van Lanen, S. G., Shen, B.,
and Bruner, S. D. (2007) Biochemistry 46, 7205−7214.
(5) Krug, D., and Muller, R. (2009) ChemBioChem 10, 741−750.
̈
(6) Wanninayake, U., and Walker, K. D. (2012) Biochemistry 51,
5226−5228.
(7) Christianson, C. V., Montavon, T. J., Festin, G. M., Cooke, H. A.,
Shen, B., and Bruner, S. D. (2007) J. Am. Chem. Soc. 129, 15744−
15745.
(8) Wanninayake, U., and Walker, K. D. (2013) J. Am. Chem. Soc.
135, 11193−11204.
(9) Yan, J., Aboshi, T., Teraishi, M., Strickler, S. R., Spindel, J. E.,
Tung, C. W., Takata, R., Matsumoto, F., Maesaka, Y., McCouch, S. R.,
Okumoto, Y., Mori, N., and Jander, G. (2015) Plant Cell 27, 1265−
1278.
ASSOCIATED CONTENT
(10) Chesters, C., Wilding, M., Goodall, M., and Micklefield, J.
■
(2012) Angew. Chem., Int. Ed. 51, 4344−4348.
S
* Supporting Information
(11) Christenson, S. D., Wu, W., Spies, M. A., Shen, B., and Toney,
M. D. (2003) Biochemistry 42, 12708−12718.
The Supporting Information is available free of charge on the
(12) Rachid, S., Krug, D., Weissman, K. J., and Muller, R. (2007) J.
Biol. Chem. 282, 21810−21817.
(13) Feng, L., Wanninayake, U., Strom, S., Geiger, J., and Walker, K.
D. (2011) Biochemistry 50, 2919−2930.
Experimental methods, GC/MS and NMR data, and
gene accession numbers (PDF)
(14) Strom, S., Wanninayake, U., Ratnayake, N. D., Walker, K. D.,
and Geiger, J. H. (2012) Angew. Chem., Int. Ed. 51, 2898−2902.
(15) Klettke, K. L., Sanyal, S., Mutatu, W., and Walker, K. D. (2007)
J. Am. Chem. Soc. 129, 6988−6989.
AUTHOR INFORMATION
■
Corresponding Author
(16) Wu, B., Szymanski, W., Wijma, H. J., Crismaru, C. G., de
Wildeman, S., Poelarends, G. J., Feringa, B. L., and Janssen, D. B.
(2009) Chem. Commun. 46, 8157−8159.
(17) Van Lanen, S. G., Oh, T.-j., Liu, W., Wendt-Pienkowski, E., and
Shen, B. (2007) J. Am. Chem. Soc. 129, 13082−13094.
Funding
The authors are grateful to the MSU Office for Inclusion and
Intercultural Initiatives for supporting the MSU Chemistry 4-
Plus Bridge to the Doctorate Program (Z.K., GA017081-
CIEG).
4
Biochemistry 2016, 55, 1−4