Arginine- and Lysine-Specific Polymers
A R T I C L E S
an important tumor suppressor, binds cooperatively to DNA only
as a dimer, stabilized by two intermolecular arginine-glutamate
salt bridges.8
High affinity molecular recognition of protein surfaces
combined with high specificity also remains a premier challenge
for artificial receptor systems, especially in light of their solvent-
exposed nature. Pioneering work by Hamilton et al. focused on
the development of aspartate-rich cyclopeptides on calixarene
scaffolds or glutamate-rich peptides on porphyrins for cationic
9
protein surface recognition. Often multiple copies of single
weak binding motifs were used to increase affinities toward
proteins: thus, a tetraguanidinium ligand was indroduced as a
helical protein surface binder for the tetramerization domain of
the above-mentioned protein P53.10 Similarly, linear anionic
1
1
oligomers were reported to adopt heparin-like properties or
efficiently inhibit human leukocyte elastase (Ki values of e 0.2
µM).12 Merritt et al. demonstrated how a high-affinity inhibitor
for cholera toxin evolves, if five copies of an R-D-galactoside
1
3
(
MNPG) are coupled to a pentacyclen core unit (IC50 ∼1 µM).
Specific recognition of phosphorylated peptides and proteins
was achieved by a fluorescent chemosensor carrying two Zn(II)-
dipicolylamine units.14 Strong and selective binding of carbonic
anhydrase was also achieved with multivalent transition metal
1
5
complexes, matching the protein’s histidine surface pattern.
By contrast, anionically functionalized amphiphilic nanoparticles
i.e., monolayer-protected gold clusters - MMPCs) use nonspe-
cific interactions to efficiently inhibit chymotrypsin through
(
1
6
electrostatic binding followed by protein denaturation. Simi-
larly, Kiessling et al. developed postsynthetically modified
(
PSM) polymers in the form of multivalent mannose displays
17
which nonspecifically inhibited hemagglutination. In a mo-
lecular imprinting approach on the protein surface, the shape
of lanthanide ion-carrying liposomes is reconstructed and used
for protein sensing. Finally, protein-protein interactions may
be probed with designed protein binders (generated, e.g., by
combinatorial library screening of “monobodies”)19 or disrupted
with synthetic â-turn mimetics (e.g., the interaction of the nerve
Figure 1. (a) Left: structural key element - arginine residue embraced by
bisphosphonate dianion. Right: schematic depicting the multiplication of
bisphosphonate units for oligoarginine recogntion. (b) Synthesis of monomer
building blocks as well as schematic structure of homo- and copolymer 1a
and 2a.
18
growth factor with its transmembrane tyrosine kinase receptor
TrkA); however, this area is still in its infancy.
(
8) Dehner, A.; Klein, C.; Hansen, S.; M u¨ ller, L.; Buchner, J.; Schwaiger, M.;
Kessler, H. Angew. Chem. 2005, 117, 5381-5386.
20
(
9) (a) Lin, Q.; Park, H. S.; Hamuro, Y.; Lee, C. S.; Hamilton, A. D.
Biopolymers 1998, 47, 285-297. (b) Park, H. S.; Lin, Q.; Hamilton, A. D.
J. Am. Chem. Soc. 1999, 121, 8-13. (c) Jain, R. K.; Hamilton, A. D. Org.
Lett. 2000, 2, 1721-1723. (d) Baldini, L.; Wilson, A. J.; Hong, J.; Hamilton,
A. D. J. Am. Chem. Soc. 2004, 126, 5656-5657.
Concept
Some years ago, we discovered that small bisphosphonate
-1
dianions bind to arginine (Ka ) 86 000 M in d6-DMSO) and
(
10) Salvatella, X.; Martinell, M.; Gair ´ı , M.; Mateu, M. G.; Feliz, M.; Hamilton,
-
1
A. D.; de Medoza, J.; Giralt, E. Angew. Chem., Int. Ed. 2004, 43, 196-
lysine residues (Ka ) 4000 M in d6-DMSO) in a peptidic
environment with remarkable affinity, while almost other amino
acid side chains are completely rejected (Figure 1a).21 However,
1
98.
(
11) Benezra, M.; Vlodavsky, I.; Yayon, A.; Bar-Shavit, R.; Regan, J.; Chang,
M.; Ben-Sasson, S. Cancer Res. 1992, 52, 5656-5662.
12) Regan, J.; McGarry, D.; Bruno, J.; Green, D.; Newman, J.; Hsu, C.-Y.;
Kline, J.; Barton, J.; Travis, J.; Choi, Y. M.; Volz, F.; Pauls, H.; Harrison,
R.; Zilberstein, A.; Ben-Sasson, A. A.; Chang, M. J. Med. Chem. 1997,
(
transition to water causes a drastic drop in free binding energy
-1
(
Ka e 100 M ), because the recognition process relies mainly
4
0, 3408-3422.
on electrostatic attraction, enforced by π-cation attraction. The
original high affinity for basic amino acids could now be
restored and markedly enhanced by applying the concept of
multivalency often found in natural surface recognition processes:
(
13) Merritt, E. A.; Zhang, Z.; Pickens, J. C.; Ahn, M.; Hol, W. G. J.; Fan, E.
J. Am. Chem. Soc. 2002, 124, 8818-8824.
14) Ojida, A.; Mito-oka, Y.; Inoue, M.; Hamachi, I. J. Am. Chem. Soc. 2002,
(
1
24, 6256-6258. Ojida, A.; Inoue, M.; Mito-oka, Y.; Hamachi, I. J. Am.
Chem. Soc. 2003, 125, 10184-10185. Ojida, A.; Kohira, T.; Hamachi, I.
Chem. Lett. 2004, 33, 1024-1025. Review: Ojida, A.; Miyahara, Y.; Kohira,
T.; Hamachi, I. Biopolymers 2004, 76, 177-184.
22
the weak arginine binder was therefore polymerized and thus
(
15) Fazal, Md. A.; Roy, B. C.; Sun, S.; Mallik, S.; Rodgers, K. R. J. Am.
Chem. Soc. 2001, 123, 6283-6290.
16) Fischer, N. O.; McIntosh, C. M.; Simard, J. M.; Rotello, V. M. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 5018-5023. Fischer, N. O.; Verma, A.;
Goodman, C. M.; Simard, J. M.; Rotello, V. M. J. Am. Chem. Soc. 2003,
transformed into an efficient receptor site for basic proteins with
KD values in buffered aqueous solution reaching the submicro-
molar regime. To this end, we performed a simple free radical
(
1
25, 13387-13391.
(
(
17) Strong, L. E.; Kiessling, L. L. J. Am. Chem. Soc. 1999, 121, 6193-6196.
18) Santos, M.; Roy, B. C.; Goicoechea, H.; Campiglia, A. D.; Mallik, S. J. J.
Am. Chem. Soc. 2004, 126, 10738-10745.
(20) Burgess, K. Acc. Chem. Res. 2001, 34, 826-835.
(21) Rensing, S.; Springer, A.; Grawe, T.; Schrader, T. J. Org. Chem. 2001,
66, 5814-5821.
(22) Review: Mammen, M.; Choi, S. K.; Whitesides, G. M. Angew. Chem., Int.
Ed. 1998, 37, 2755-2794.
(
19) Koide, A.; Abbateillo, S.; Rothgery, L.; Koide, S. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 1253-1258.
J. AM. CHEM. SOC.
9
VOL. 128, NO. 2, 2006 621