Communication
ChemComm
The kinetics of the cascade reaction after the addition of the
catalyst shows that as the rate of the reaction increases with
time the amount of reactant 1a starts decreasing along with a
related increase in the corresponding product 3a. As shown in
Fig. 2d, with increasing time, the formation of 3a steadily increases
up to 60 min yielding B90% product for the 2,3-DhaTph catalyst.
The probable reason for the significant activity shown by the
W. R. Dichtel, Nat. Chem., 2010, 2, 672; (c) X. Feng, X. S. Ding and
D. Jiang, Chem. Soc. Rev., 2012, 41, 6010; (d) S. Y. Ding and W. Wang,
Chem. Soc. Rev., 2013, 42, 548; (e) A. Bhunia, V. Vasylyeva and
C. Janiak, Chem. Commun., 2013, 49, 3961.
2 (a) J. E. Anthony, Chem. Rev., 2006, 106, 5028; (b) S.-Y. Ding, J. Gao,
Q. Wang, Y. Zhang, W.-G. Son, C.-Y. Su and W. Wang, J. Am. Chem.
Soc., 2011, 133, 19816; (c) D. N. Bunck and W. R. Dichtel, J. Am.
Chem. Soc., 2013, 135, 14952.
3 (a) M. G. Rabbani, A. K. Sekizkardes, Z. Kahveci, T. E. Reich, R. Ding
and H. M. El-Kaderi, Chem. – Eur. J., 2013, 19, 3324; (b) X. Feng,
L. Liu, Y. Honsho, A. Saeki, S. Seki, S. Irle, Y. Dong, A. Nagai and
D. Jiang, Angew. Chem., Int. Ed., 2012, 51, 2618; (c) S. Wan,
F. Gandara, A. Asano, H. Furukawa, A. Saeki, S. K. Dey, L. Liao,
M. W. Ambrogio, Y. Y. Botros, X. Duan, S. Seki, J. F. Stoddart and
O. M. Yaghi, Chem. Mater., 2011, 23, 4094; (d) X. Ding, J. Guo,
X. Feng, Y. Honsho, J. Guo, S. Seki, P. Maitarad, A. Saeki, S. Nagase
and D. Jiang, Angew. Chem., Int. Ed., 2011, 50, 1289.
(a) L. M. Lanni, R. W. Tilford, M. Bharathy and J. J. Lavigne, J. Am.
Chem. Soc., 2011, 130, 11872; (b) Y. Du, K. Mao, P. Kamakoti,
P. Ravikovitch, C. Paur, S. Cundy, Q. Li and D. Calabro, Chem.
Commun., 2012, 48, 4606.
2,3-DhaTph catalyst may be the fine distribution of acidic and
basic sites in the crystalline COF and periodic arrangement of
these centres distributed over the entire COF matrix. In order to
prove the necessity of acidic and basic sites for catalyzing the
1
4
cascade reaction, we have repeated the same catalytic reaction
in the presence of 2,3-DmaTph as a catalyst, which holds only
basic porphyrin centers but lacks acidic catecholic –OH func-
tionality, which has been replaced by –OMe functionality. In
this case, the reaction proceeds very slowly giving only 52%
yield of 3a in 90 min (Section S13, ESI,† Table 3); as shown in
Fig. 3d. Hence, it is clear that only basic sites are not sufficient
to catalyze the cascade reaction (Fig. 3). The solid catalysts can
be recycled for more than five times without loss in product
yield as shown in Fig. 3e. 2,3-DhaTph has showed excellent
recyclability for more than five catalytic cycles giving yields over
B81% in an estimated time span of 90 min. In the case of
4
5
(a) S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su and W. Wang,
J. Am. Chem. Soc., 2011, 133, 19816; (b) P. Pachfule, S. Kandambeth, D. D.
D ´ı az and R. Banerjee, Chem. Commun., 2014, 50, 3169.
6 (a) Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu and Y. Yan, Angew. Chem.,
Int. Ed., 2014, 53, 2878; (b) H. Xu, X. Chen, J. Gao, J. Lin, M. Addicoat,
S. Irle and D. Jiang, Chem. Commun., 2014, 50, 1292.
7
(a) B. List, Chem. Rev., 2007, 107, 5413; (b) M. E. Belowich and
J. F. Stoddart, Chem. Soc. Rev., 2012, 41, 2003.
8
(a) E. Merino, E. Verde-Sesto, E. M. Maya, M. Iglesias, F. S ´a nchez
and A. Corma, Chem. Mater., 2013, 25, 981; (b) A. Corma, H. Garcia
and F. X. L. Xamena, Chem. Rev., 2010, 110, 4606; (c) D. Farrusseng,
S. Aguado and C. Pinel, Angew. Chem., Int. Ed., 2009, 48, 7502;
(d) A. Modak, J. Mondal and A. Bhaumik, Appl. Catal., A, 2013,
2,3-DmaTph, as expected, we have also observed the recycl-
ability upto 5 cycles, but very limited yield up to B42% (Fig. 3d
and e and Section S13, ESI†).
459, 41.
In conclusion, we have synthesized a catalytically active COF
9
(a) Z. Wang, B. Zhang, H. Yu, L. Sun, C. Jiao and W. Liu, Chem.
Commun., 2010, 46, 7730; (b) G. Li and Z. Wan, Macromolecules,
2013, 46, 3058; (c) R. F. Kelley, W. S. Shin, B. Rybtchinski, L. E. Sinks
and M. R. Wasielewski, J. Am. Chem. Soc., 2007, 129, 3173.
0 (a) S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine and
R. Banerjee, J. Am. Chem. Soc., 2012, 134, 19524; (b) S. Kandambeth,
D. B. Shinde, M. K. Panda, B. Lukose, T. Heine and R. Banerjee,
Angew. Chem., Int. Ed., 2013, 52, 13052.
2,3-DhaTph with weak acidic and basic sites for catalyzing the
cascade reaction. 2,3-DhaTph showed a large surface area, high
crystallinity as well as porosity than 2,3-DmaTph, which lacks
intramolecular hydrogen bonding within the framework. The
potential of 2,3-DhaTph for catalyzing the cascade reaction is
validated by the good catalytic activity shown towards the
cascade reaction with very high product yield and recyclability
over 5 cycles. The necessity of the basic and acidic sites in a
catalyst for catalyzing the cascade reaction has been further
validated by utilization of methoxy functionalized 2,3-DmaTph.
DBS acknowledges for a CSIR-Nehru science postdoctoral
research fellowship, SK and RB acknowledges CSIR (CSC0122
and CSC0102) for funding.
1
1
1
1 B. Lukose, A. Kuc and T. Heine, Chem. – Eur. J., 2011, 17, 2388.
2 (a) G. R. Desiraju and T. Steiner, The Weak Hydrogen Bond in
Structural Chemistry and Biology, Oxford University Press, Oxford,
1
3
999; (b) A. Kovacs, A. Szabo and I. Hargittai, Acc. Chem. Res., 2002,
5, 887.
1
1
3 (a) X. Chen, N. Huang, J. Gao, H. Xu, F. Xu and D. Jiang, Chem.
Commun., 2014, 50, 6161; (b) S. J. Kraft, G. Zhang, D. Childers,
F. Dogan, J. T. Miller, S. T. Nguyen and A. S. Hock, Organometallics,
2
014, 33, 2517.
4 The concept of necessity of both acidic (quinolic–OH) and basic
porphyrin) groups for catalyzing the aforementioned catalytic
(
Notes and references
reaction was confirmed by using a literature reported DhaTph
catalyst, which has both acidic as well as basic centers, with similar
10b
1
(a) A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger
and O. M. Yaghi, Science, 2005, 310, 1166; (b) E. L. Spitler and
stability. Also, in the case of DhaTph, we have observed a similar
yield of B94% of product 3a (ESI,† Section S13).
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2014