10.1002/ejoc.201901377
European Journal of Organic Chemistry
COMMUNICATION
Rodríguez, Adv. Synth. Catal. 2006, 348, 1841–1845; g) Y. Yuan, Z.
Shi, X. Feng, X. Liu, Appl. Organometal. Chem. 2007, 21, 958–964; h)
J. Kischel, K. Mertins, D. Michalik, A. Zapf, M. Beller, Adv. Synth. Catal.
2007, 349, 865–870; i) S. Shirakawa, S. Kobayashi, Org. Lett. 2007, 9,
311–314; j) M. Rueping, B. J. Nachtsheim, A. Kuenkel, Org. Lett. 2007,
9, 825–828; k) W. Huang, J. Wang, Q. Shen, X. Zhou, Tetrahedron Lett.
2007, 48, 3969–3973; l) U. Jana, S. Biswas, S. Maiti, Tetrahedron Lett.
2007, 48, 4065–4069; m) R. Sanz, D. Miguel, A. Martínez, J. M.
Álvarez-Gutiérrez, F. Rodríguez, Org. Lett. 2007, 9, 2027–2030; n) M.
Noji, Y. Konno, K. Ishii, J. Org. Chem. 2007, 72, 5161–5167; o) K.
Motokura, N. Nakagiri, T. Mizugaki, K. Ebitani, K. Kaneda, J. Org.
Chem. 2007, 72, 6006–6015; p) P. N. Liu, Z. Y. Zhou, C. P. Lau, Chem.
Eur. J. 2007, 13, 8610–8619; q) P. G. Cozzi, L. Zoli, Angew. Chem. Int.
Ed. 2008, 47, 4162–4166; r) Z. Li, Z. Duan, H. Wang, R. Tian, Q. Zhu,
Y. Wu, Synlett 2008, 2535–2539; s) J. S. Yadav, B. V. S. Reddy, T.
Pandurangam, K. V. R. Rao, K. Praneeth, G. G. K. S. N. Kumar, C.
Madavi, A. C. Kunwar, Tetrahedron Lett. 2008, 49, 4296–4301 t) G.-W.
Wang, Y.-B. Shen, X.-L. Wu, Eur. J. Org. Chem. 2008, 4999–5004; u) J.
Fan, Z. Wang, Chem. Commun. 2008, 5381–5383; v) M. R.
Shushizadeh, M. Kiany, Chinese Chem. Lett. 2009, 20, 1068–1072; w)
K. Funabiki, T. Komeda, Y. Kubota, M. Matsui, Tetrahedron 2009, 65,
7457–7463; x) P. N. Liu, F. Xia, Q. W. Wang, Y. J. Ren, J. Q. Chen,
Green Chem. 2010, 12, 1049–1055; y) P. Thirupathi, S. S. Kim,
Tetrahedron 2010, 66, 2995–3003; z) J. Wang, Y. Masui, M. Onaka,
Synlett 2010, 2493–2497 aa) M. Rueping, B. J. Nachtsheim, E.
Sugiono, Synlett 2010, 1549–1553; ab) P. N. Liu, L. Dang, Q. W. Wang,
S. L. Zhao, F. Xia, Y. J. Ren, X. Q. Gong, J. Q. Chen, J. Org. Chem.
2010, 75, 5017–5030; ac) P. Theerthagiri, A. Lalitha, Tetrahedron Lett.
2010, 51, 5454–5458; ad) A. Zhu, L. Li, J. Wang, K. Zhuo, Green Chem.
2011, 13, 1244–1250; ae) P. N. Chatterjee, S. Roy, Tetrahedron 2011,
67, 4569–4577 af) E. Rafiee, M. Khodayari, S. Shahebrahimi, M.
Joshaghani, J. Mol. Catal. A: Chem. 2011, 351, 204–209; ag) T.
Aoyama, S. Miyota, T. Takido, M. Kodomari, Synlett 2011, 2971–2976;
ah) E. Rafiee, M. Khodayari, M. Joshaghani, Can. J. Chem. 2011, 89,
1533–1538; ai) E. Rafiee, M. Khodayari, M. Kahrizi, R. Tayebee, J. Mol.
Catal. A: Chem. 2012, 358, 121–128; aj) F. Xia, Z. L. Zhao, P. N. Liu,
Tetrahedron Lett. 2012, 53, 2828–2832; ak) E. Rafiee, M. Kahrizi, M.
Joshaghani, Chin. Chem. Lett. 2012, 23, 1363–1366; al) W. Zhang, Y.
Dai, H. Zhu, W. Zhang, Tetrahedron Lett. 2013, 54, 1747–1750; am) L.
Li, A. Zhu, Y. Zhang, X. Fan, G. Zhang, RSC Adv. 2014, 4, 4286–4291;
an) S. Khafajeh, B. Akhlaghinia, S. Rezazadeh, H. Eshghi, J. Chem.
Sci. 2014, 126, 1903–1912; ao) L. Chen, X.-P. Yin, C.-H. Wang, J.
Zhou, Org. Biomol. Chem. 2014, 12, 6033–6048; ap) T. Aoyama, T.
Yamamoto, S. Miyota, M. Hayakawa, T. Takido, M. Kodomari, Synlett
2014, 25, 1571–1576; aq) P. Moriel, A. B. Garíca, Green Chem. 2014,
16, 4306–4311; ar) X. Zhang, R. Qiu, C. Zhou, J. Yu, N. Li, S. Yin, X.
Xu, Tetrahedron 2015, 71, 1011–1017; as) M. Karimzadeh, H. S. Asl, H.
Hashemi, D. Saberi, K. Niknam, Monatsh. Chem. 2018, 149, 2237–
2244.
Experimental Section
Typical Procedure for the Diastereoconvergent Nucleophilic
Substitutions of Diarylmethanols Diastereomixtures with 1,3-
Dicarbonyl Compounds (Table 2, entry 1): To a solution of SnBr4 (4.2
mg, 9.58 μmol) in MeNO2 (0.4 mL) at 0 °C were successively added
diarylmethanol 3a[4] (63.9 mg, 0.191 mmol) in MeNO2 (0.5 mL + 0.5 mL +
0.5 mL rinse) and (PhCO)2CH2 (64.7 mg, 0.289 mmol). The reaction
mixture was stirred for 1 h at 0 °C and then it was quenched with
saturated aqueous NaHCO3 at 0 °C and the mixture diluted with CH2Cl2.
The organic layer was separated and the aqueous layer was extracted
with EtOAc. The combined organic layer was dried over Na2SO4. After
filtration of the mixture and evaporation of the solvent, the crude product
was semi-purified by thin-layer chromatography on silica (hexane/EtOAc
= 4:1 x2) to afford the diastereomer mixtures 12a, whose ratio was
determined by 1H NMR analysis (dr = 97:3). The both diastereomers
were separated by thin-layer chromatography on silica (toluene/EtOAc =
20:1 x2) to afford the major diastereomer 12a (93.2 mg, 90% yield) as a
white solid.
The 1 mmol-scale Synthesis of 12a: To a solution of SnBr4 (23.0 mg,
52.5 μmol) in MeNO2 (6.5 mL) at 0 °C were successively added
diarylmethanol 3a[4] (352.0 mg, 1.05 mmol) in MeNO2 (2 mL + 1 mL + 1
mL rinse) and (PhCO)2CH2 (353.1 mg, 1.57 mmol). The reaction mixture
was stirred for 1 h at 0 °C and then it was quenched with saturated
aqueous NaHCO3 at 0 °C and the mixture diluted with CH2Cl2. The
organic layer was separated and the aqueous layer was extracted with
EtOAc. The combined organic layer was dried over Na2SO4. After
filtration of the mixture and evaporation of the solvent, the crude product
was semi-purified by column chromatography on silica (hexane/EtOAc =
4:1 x2) to afford the diastereomer mixtures 12a, whose ratio was
determined by 1H NMR analysis (dr = 97:3). The both diastereomers
were separated by thin-layer chromatography on silica (toluene/EtOAc =
20:1 x2) to afford the major diastereomer 12a (517.8 mg, 91% yield) as a
white solid.
Acknowledgments
This study was supported by a Research Grant from The
Takahashi Industrial and Economic Research Foundation,
Japan.
Keywords: Benzylation • Carbocations • Chiral auxiliaries •
Diastereoselectivity • Tin
[1]
For reviews, see: a) M. Bandini, M. Tragni, Org. Biomol. Chem. 2009, 7,
1501–1507; b) M. Rueping, B. J. Nachtsheim, Beilstein J. Org. Chem.
2010, 6, 6; c) E. Emer, R. Sinisi, M. G. Capdevila, D. Petruzziello, F. De
Vincentiis, P. G. Cozzi, Eur. J. Org. Chem. 2011, 647–666; d) R. Kumar,
E. V. Van der Eycken, Chem. Soc. Rev. 2013, 42, 1121–1146; e) R. R.
Naredla, D. A. Klumpp, Chem. Rev. 2013, 113, 6905−6948; f) A. Baeza,
C. Nájera, Synthesis 2014, 46, 25–34; g) M. Dryzhakov, E. Richmond,
J.Moran, Synthesis 2016, 48, 935–959; h) R. Ortiz, R. P. Herrera,
Molecules 2017, 22, 574; i) A. Gualandi, Synthesis 2017, 49, 3433–
3443; j) N. Ajvazi, S. Stavber, ARKIVOC 2018, 288–329.
[3]
For reviews, see: a) R. W. V. De Water, T. R. R. Pettus, Tetrahedron
2002, 58, 5367–5405; b) H. Amouri, J. Lebras, Acc. Chem. Res. 2002,
35, 501–510; c) N. J. Willis, C. D. Bray, Chem. Eur. J. 2012, 18, 9160–
9173; d) M. S. Singh, A. Nagaraju, N. Anand, S. Chowdhury, RSC Adv.
2014, 4, 55924–55959; e) W.-J. Bai, J. G. David, Z.-G. Feng, M. G.
Weaver, K.-L. Wu, T. R. R. Pettus, Acc. Chem. Res. 2014, 47,
3655−3664; f) Z. Wang, J. Sun, Synthesis 2015, 47, 3629–3644; g) A.
A. Jaworski, K. A. Scheidt, J. Org. Chem. 2016, 81, 10145−10153; h) L.
Caruana, M. Fochi, L. Bernardi, Molecules 2015, 20, 11733–11764.
N. Suzuki, K. Nakata, Eur. J. Org. Chem. 2017, 7075–7086.
[4]
[5]
[6]
[7]
[8]
[9]
[2]
a) F. Bisaro, G. Prestat, M. Vitale, G. Poli, Synlett 2002, 1823–1826; b)
G. C. Gullickson, D. E. Lewis, Aust. J. Chem. 2003, 56, 385–388; c) M.
Yasuda, T. Somyo, A. Baba, Angew. Chem. Int. Ed. 2006, 45, 793–
796; d) K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani, K.
Kaneda, Angew. Chem. Int. Ed. 2006, 45, 2605–2609; e) M. Rueping,
B. J. Nachtsheim, W. Ieawsuwan, Adv. Synth. Catal. 2006, 348, 1033–
1037; f) R. Sanz, A. Martínez, D. Miguel, J. M. Álvarez-Gutiérrez, F.
R. Fujihara, K. Nakata, Eur. J. Org. Chem. 2018, 6566–6573.
R. Kubo, K. Nakata, Asian J. Org. Chem. 2019, 119–122.
H. Yamamoto, K. Nakata, Eur. J. Org. Chem. 2019, 4906–4910.
H. Yamamoto, K. Nakata, Org. Lett. 2019, 20, 7075–7061.
For a recent review, see: I. Bauer, H.-J. Knölker, Chem. Rev. 2015, 115,
3170–3387 and references cited therein.
This article is protected by copyright. All rights reserved.