J. Chil. Chem. Soc., 60, Nº 3 (2015)
Antibacterial Screening: The antibacterial assay was performed according
11. E.C. Escudero-Adan, M.M. Belmonte, E. Martin, G. Salassa, J. Benet-
Buchholz, A.W. Kleij, J. Org. Chem., 76, 5404, (2011).
12. C.-L. Han, Acta Crystallogr., E68, m677, (2012).
27
to the literature method. Penicillin G was used as a standard drug. The zone of
-3
inhibition for the 5000 μg mL test solutions (DMSO as the solvent) on the four
bacteria, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and
Staphylococcus aureus is given in Table 4. The MIC values are given in Table
13. A. Tzubery, E.Y. Tshuva, Inorg. Chem., 51, 1796, (2012).
14. SMART and SAINT, Area Detector Control and Integration Software,
Madison (WI, USA): Bruker Analytical X-ray Instruments Inc., (1997).
15. G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction
of Area Detector Data. Göttingen (Germany): University of Göttingen,
(1997).
16. G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal
Structures, Göttingen (Germany): University of Göttingen, (1997).
17. W.J. Geary, Coord. Chem. Rev., 7, 81, (1971).
5
. The results indicated that there was from weak to negative activity observed
by L against P. aeruginosa and S. aureus, and medium activity against E. coli
and B. subtilis. It is noteworthy that the zones of inhibition areas are somewhat
larger for the complexes than the ligand. The trend in this work is accord with
28,29
those reported earlier,
which have shown that metal complexes are more
potent bactericidal than that of the corresponding Schiff bases. Among the
compounds, complex (1) has most potent activity against B. subtilis with MIC
-3
value of 3.13 μg mL , which is even comparable to that of Penicillin G.
18. S. Mukhopadhyay, D. Mandal, D. Ghosh, I. Goldberg, M. Chaudhury,
Inorg. Chem., 42, 8439, (2003).
Table 4 Antibacterial screening results.
19. P. Mukherjee, M.G.B. Drew, A. Ghosh, Eur. J. Inorg. Chem., 3372,
(
2008).
20. S. Basak, S. Sen, S. Mitra, G. Rosair, M.T.G. Rodriguez, Polyhedron, 26,
104, (2007).
21. S. Chandra, A.K. Sharma. Spectrochim. Acta A, 72, 851, (2009).
Zone of inhibition (mm)
Compound
E. coli
P. aeruginosa
B. subtilis
S. aureus
5
c
L
11 ± 3.3
6 ± 3.3
12 ± 3.3
–
2
2. F.A. Mautner, J.B. Soileau, P.K. Bankole, A.A. Gallo, S.S. Massoud, J.
Mol. Struct. 889, 271, (2008).
3. J.R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination
Compounds, Plenum Press, New York, (1971).
24. H.-J. Zhang, X. Qin, K. Liu, D.-D. Zhu, X.-M. Wang, H.-L. Zhu, Bioorg.
Med. Chem., 19, 5708, (2011).
5. W. Li, B.-W. Ding, H. Sun, X.-L. Wang, Z. You, Synth. React. Inorg.
Met.-Org. Nano-Met. Chem., 42, 666, (2012).
(
1)
17 ± 3.3
22 ± 5.8
31 ± 3.3
–
15 ± 5.8
25 ± 3.3
27 ± 3.3
–
17 ± 3.3
16 ± 3.3
29 ± 5.8
–
13 ± 3.3
18 ± 3.3
25 ± 3.3
–
2
(2)
Penicillin G
DMSO
2
c
“
–” indicates that the bacteria are resistant to the compound.
2
6. T. Rosu, M. Negoiu, S. Pasculescu, E. Pahontu, D. Poirier, A. Gulea, Eur.
J. Med. Chem., 45, 774, (2010).
-3
Table 5 Antibacterial activities as MIC values (μg mL ).
Compound
L
E. coli
50
P. aeruginosa
B. subtilis
50
S. aureus
> 100
12.5
> 100
25
(
1)
2)
12.5
6.25
3.13
3.13
(
25
6.25
25
Penicillin G
6.25
1.56
6.25
SUMMARY
Two new mononuclear nickel(II) and zinc(II) complexes with the
zwitterionic ligand 2-bromo-6-[(3-cyclohexylammoniopropylimino)methyl]
phenolate have been prepared and characterized. The complexes have from
medium to effective antibacterial activities, which are interesting and deserve
deeply study.
SUPPLEMENTARY MATERIAL
CCDC-945680 (1) and 945681 (2) contain the supplementary
crystallographic data for this paper. The data can be obtained free of charge
at http://www.ccdc.cam.ac.uk/const/retrieving.html or from the Cambridge
Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ,
UK; fax: +44(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk.
REFERENCES
1
2
.
.
N. Domracheva, A. Pyataev, R. Manapov, M. Gruzdev, U. Chervonova, A.
Kolker, Eur. J. Inorg. Chem., 8, 1219, (2011).
N. Sathya, G. Raja, C. Jayabalakrishnan, Synth. React. Inorg. Met.-Org.
Nano-Met. Chem., 41, 81, (2011).
3
4
.
.
Y. He, C. Cai, Catal. Commun., 12, 678, (2011).
W.-X. Feng, Y.-N. Hui, T. Wei, X.-Q. Lu, J.-R. Song, Z.-N. Chen, S.-S.
Zhao, W.-K. Wong, R.A. Jones, Inorg. Chem. Commun., 14, 75, (2011).
I. Correia, S. Marcao, K. Koci, I. Tomaz, P. Adao, T. Kiss, T. Jakusch, F.
Avecilla, J.C. Pessoa, Eur. J. Inorg. Chem., 5, 694, (2011).
J.-C. Zhang, X.-S. Zhou, X.-L. Wang, X.-F. Li, Z.-L. You, Transition Met.
Chem., 36, 93, (2011).
5
6
7
8
9
1
.
.
.
.
.
L.-W. Xue, X.-W. Li, G.-Q. Zhao, W.-C. Yang, Russ. J. Coord. Chem.,
3
9, 872, (2013).
Y. Xiong, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 43, 961,
2013).
(
Q.-W. Yang, Y. Lei, P. Wang, Synth. React. Inorg. Met.-Org. Nano-Met.
Chem., 44, 1208, (2014).
0. G.-Y. Li, J. Zhang, P.W.H. Chan, Z.-J. Xu, N.Y. Zhu, C.-M. Che,
Organometallics, 25, 1676, (2006).
3
037