Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
conversion of water gas to formic acid derivatives are currently
underway.
Notes and references
1 Review: H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau,
E. J. Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus,
D. A. Dixon, K. Domen, D. L. DuBois, J. Eckert, E. Fujita,
D. H. Gibson, W. A. Goddard, D. W. Goodman, J. Keller,
G. J. Kubas, H. H. Kung, J. E. Lyons, L. E. Manzer, T. J. Marks,
K. Morokuma, K. M. Nicholas, R. Periana, L. Que, J. Rostrup-
Nielson, W. M. H. Sachtler, L. D. Schmidt, A. Sen, G. A. Somorjai,
P. C. Stair, B. R. Stults and W. Tumas, Chem. Rev., 2001, 101, 953–996
and references therein.
2 (a) G. C. Chinchen, K. C. Waugh and D. A. Whan, Appl. Catal., 1986,
25, 101; (b) M. Kurtz, H. Wilmer, T. Genger, O. Hinrichsen and
M. Muhler, Catal. Lett., 2003, 86, 77.
3 (a) M. S. Spencer, Catal. Lett., 1989, 50, 37–40; (b) G. A. Olah, Angew.
Chem., 2005, 117, 2692, (Angew. Chem., Int. Ed., 2005, 44, 2636).
4 Review: L. Lloyd, D. E. Ridler and M. V. Twigg, in Catalyst Handbook,
ed. M. V. Twigg, Wolfe, London, 1989.
5 H. Wilmer, M. Kurtz, K. V. Klementiev, O. P. Tkatschenko,
W. Gru¨nert, O. Hinrichsen, A. Birkner, S. Rabe, K. Merz, M. Driess,
C. Wo¨ll and M. Muhler, Phys. Chem. Chem. Phys., 2003, 5, 4736.
6 (a) S. A. French, A. A. Sokol, S. T. Bromley, C. R. A. Catlow,
S. C. Rogers, F. King and P. Sherwood, Angew. Chem., Int. Ed., 2001,
40, 4437; (b) S. A. French, A. A. Sokol, S. T. Bromley, C. R. A. Catlow
and P. Sherwood, Top. Catal., 2003, 24, 161.
7 S. Polarz, J. Strunk, V. Ischenko, M. W. E. Van den Berg,
O. Hinrichsen, M. Muhler and M. Driess, Angew. Chem., Int. Ed.,
2006, 45, 2965–2969.
8 I. A. Fisher and A. T. Bell, J. Catal., 1997, 172, 222.
9 (a) G. Ghiotti, A. Chioino and F. Boccuzzi, Surf. Sci., 1993, 297,
228–234; (b) J. C. Lavalley, S. Saussey and T. Rais, J. Mol. Catal., 1982,
17, 289–298.
10 (a) D. M. Minahan, W. S. Epling and G. B. Hoflundy, J. Catal., 1998,
179, 241–257; (b) J. G. Nunan, C. E. Bogdan, K. Klier, K. J. Smith,
C. W. Young and R. G. Herman, J. Catal., 1989, 116(1), 195–221; (c)
P. Winiarek and J. Kijenski, J. Chem. Soc., Faraday Trans., 1998, 94(1),
167–172; (d) A. Szabo, Prog. Catal., 2000, 9(1–2), 65–72.
11 W. Marchiniak, K. Merz, M. Moreno and M. Driess, Organometallics,
2006, 25, 4931–4933.
12 D. G. Rethwisch and J. A. Dumesic, Langmuir, 1986, 2, 73–79.
13 R. Han, I. B. Gorell, A. G. Looney and G. Parkin, J. Chem. Soc.,
Chem. Commun., 1991, 717.
14 R. Ahlrichs, M. Ba¨r, M. Ha¨ser, H. Horn and C. Ko¨lmel, Chem. Phys.
Lett., 1989, 162, 165–169.
15 S. Bailey, G. F. Froment, J. W. Snoeck and K. C. Waugh, Catal. Lett.,
1994, 30, 99.
16 Crystal data for [Zn(HCO2)2?2H2O] see ESI.{ Crystal data for
C2H6O6Zn, Mr = 191.44, monoclinic, space group P21/c (No. 14), a =
Fig. 3 In situ IR spectra of the gradual conversion of 1c with CO2. (a)
Vibrational bands between 1250 and 1450 cm21. (b) Vibrational modes
between 1500 and 1900 cm21
.
aggregates and uncharacterized organic side-products can be
observed.
The heterobimetallic cubanes 1c (ratio Li : Zn = 2 : 2) and 1d
(ratio Li : Zn = 3 : 1) react also with CO2 which has been
monitored by in situ IR spectroscopy. Fig. 3 shows the changes of
selected characteristic vibrational modes for the gradual conver-
sion of 1c which are practically identical with those of 1d.
However, reaction progress is significantly slower than that for the
monolithium cluster 1b. While the conversion of 1b with CO2 is
complete after ca. 5 min, it takes ca. 30 min to consume the same
molar quantity of 1c and 1d, respectively, affording
[Zn(HCO2)2?2H2O] and Li(HCO2) hydrates as major products.
The distinct reactivity of 1b vs. 1c and 1d suggests that hydride
transfer from the Zn–H bond to CO2 is significantly reduced by
increasing the molar ratio of Li : Zn. In line with that, the relatively
low reactivity of 1a indicates that the presence of at least one Li ion
as a Lewis-acidic centre in proximity to the Zn–H moiety fosters
the hydride transfer to CO2.
˚
8.6803(9), b = 7.1241(10), c = 9.3060(12) A, b = 97.664(3)u, V =
570.3(1) A , rcalcd = 2.229 g cm23, m = 4.265 mm21, Z = 4,
3
˚
On the other hand, increasing the Li : Zn ratio reduces the
basicity of the Zn–H moiety due to a stronger O A Li vs. O A Zn
coordination. In conclusion, our model systems demonstrate the
pivotal role of Li ions for an accelerated reduction of CO2 at Zn–H
sites. Although, the mechanism for the accelerated reduction of
CO2 through the presence of Li ions is still unknown, our
preliminary results on the model systems 1a–1d suggest that the
selective conversion of water gas (hydrogenation of CO2) into
formic acid derivatives (e.g., formic acid methylester) could be
strongly favoured by using lithium-promoted ZnO supports. In
line with our previous results on synthesizing nanoscaled zinc
oxide materials through the organometallic precursor approach,18
1b–1d are promising molecular single-source precursors for the
synthesis of Li-promoted, nanoscaled ZnO materials. Respective
investigations on the synthesis and catalytic performance of
Li-promoted ZnO nanoparticles for the selective catalytic
˚
l = 0.71073 A, T = 213 K, 209 reflections collected (¡h, ¡k, ¡l), [(H
range: 3.71 to 25.02], 926 independent (Rint=0.019) and 734 observed
reflections [I . 2s(I)], 110 refined parameters, R = 0.022, wR2 = 0.062.
CCDC 650772. For crystallographic data in CIF or other electronic
format see DOI: 10.1039/b714806b.
17 A. S. Lipton, M. D. Smith, R. D. Adams and P. D. Ellis, J. Am. Chem.
Soc., 2002, 124, 410–414.
18 (a) K. Merz, R. Schoenen and M. Driess, J. Phys. IV, 2001, 11, 467; (b)
M. Driess, K. Merz, R. Schoenen, R. Rabe, F. E. Kruis, A. Roy and
A. Birkner, C. R. Chim., 2003, 6(3), 273; (c) J. Hambrock, S. Rabe,
K. Merz, A. Wohlfarth, A. Birkner, R. A. Fischer and M. Driess,
J. Mater. Chem., 2003, 13, 1731; (d) M. Kurtz, N. Bauer, C. Buescher,
H. Wilmer, O. Hinrichsen, R. Becker, S. Rabe, K. Merz, M. Driess,
R. A. Fischer and M. Muhler, Catal. Lett., 2004, 92, 49; (e) S. Polarz,
A. Roy, M. Merz, S. Halm, D. Schro¨der, L. Schneider, G. Bacher,
F. E. Kruis and M. Driess, Small, 2005, 1, 2; (f) V. Ischenko, S. Polarz,
D. Grote, V. Stavarache, K. Fink and M. Driess, Adv. Funct. Mat.,
2005, 15, 1945; (g) D. Schro¨der, H. Schwarz, S. Polarz and M. Driess,
Phys. Chem. Chem. Phys., 2005, 7, 1049.
This journal is ß The Royal Society of Chemistry 2008
Chem. Commun., 2008, 73–75 | 75