Full Paper
Conclusions
the Croatian Science Foundation (HrZZ) (project number IP-11-
2013-7387).
Chiral 2,2′-biphenyl-substituted amino alcohol oxalamide gelat-
ors 3 and 4 were prepared and studied as rare examples of
proatropisomeric chiral gelators, having both central and axial
chirality (Figure 1). The results show that type I and type II
gelators have dramatically different properties. With type I ge-
lators, central-to-axial chirality transfer was found to occur only
upon self-aggregation.[7] In contrast, the crystal structure of rac-
3, together with the results of the concentration- and tempera-
ture-dependent CD and 1H NMR studies, revealed that in gelled
toluene and nongelled chloroform and DMSO, a mixture of
(R,aR,R)-3 and (R,aS,R)-3 diastereomers is formed due to central-
to-axial chirality transfer. Crystallographic and spectroscopic (1H
NMR, CD) evidence supports an intramolecularly C*–NH···OH
hydrogen-bonded structure for the major (R,aR,R)-3 dia-
stereomer, and a structure for the minor (R,aS,R) diastereomer
lacking such hydrogen bonding (Figure 9). The temperature-
dependent NMR study of the (R,R)-3 solution samples (CDCl3
and [D6]DMSO) and of the [D8]toluene gel revealed the occur-
rence of thermally induced diastereomer interconversion and
diastereomer self-sorting processes, the latter resulting in the
self-assembly into the gel network exclusively of the major
(R,aR,R)-3 diastereomer.
Keywords: Supramolecular chemistry · Self-assembly ·
Chirality transfer · Sol-gel processes · Gels
[1] For some recent reviews on low-molecular-weight gelators, see: a) K.
Hanabusa, M. Suzuki, Polym. J. 2014, 46, 776–782; b) Z. F. Sun, Q. Y.
Huang, T. He, Z. Y. Li, Y. Zhang, L. Z. Yi, ChemPhysChem 2014, 15, 2421–
2430; c) X. D. Yu, L. M. Chen, M. M. Zhang, T. Yi, Chem. Soc. Rev. 2014,
43, 5346–5371; d) Q. i. Zhenhui, C. A. Schalley, Acc. Chem. Res. 2014, 47,
2222–2233; e) P. F. Duan, H. Cao, L. Zhang, M. H. Liu, Soft Matter 2014,
10, 5428–5448; f) C. Tomasini, N. Castellucci, Chem. Soc. Rev. 2013, 42,
156–172; g) J. W. Steed, Chem. Commun. 2011, 47, 1379–1383; h) J. W.
Steed, Chem. Soc. Rev. 2010, 39, 3686–3699; i) A. Ayaghosh, V. K. Praveen,
C. Vijayakumar, Chem. Soc. Rev. 2008, 37, 109–122; j) P. Dastidar, Chem.
Soc. Rev. 2008, 37, 2699–2715; k) M. Sada, N. Takeuchi, M. Fujita, M.
Numata, S. Shinkai, Chem. Soc. Rev. 2007, 36, 415–435; l) M. George, R. G.
Weiss, Acc. Chem. Res. 2006, 39, 489–497; m) J. van Esch, B. L. Feringa,
Angew. Chem. Int. Ed. 2000, 39, 2263–2266; Angew. Chem. 2000, 112,
2351–2354.
[2] a) K. K. Diehn, O. H. Hyuntaek, R. Hashemipour, R. G. Weiss, S. R. Ragha-
van, Soft Matter 2014, 10, 2632–2640; b) A. R. Hirst, S. Roy, M. Arora, A. K.
Das, N. Hodson, P. Murray, S. Marshall, N. Javid, J. Sefcik, J. Boekhoven,
J. H. van Esch, S. Santabarbara, N. T. Hunt, R. V. Ulijn, Nature Chemistry
2010, 2, 1089–1094; c) A. R. A. Palmans, E. W. Meijer, Angew. Chem. Int.
Ed. 2007, 46, 8948–8968; Angew. Chem. 2007, 119, 9106–9126; d) J. J. D.
de Jong, T. D. Tiemersma Wegman, J. H. van Esch, B. L. Feringa, J. Am.
Chem. Soc. 2005, 127, 13804–13805; e) A. Aggeli, I. A. Nyrkova, M. Bell,
R. Harding, L. Carrick, T. C. B. McLeish, A. N. Semenov, N. Boden, Proc.
Natl. Acad. Sci. USA 2001, 98, 11857–11862; f) P. Jonkheijm, P.
van der Schoot, A. P. H. J. Schenning, E. W. Meijer, Science 2006, 313, 80–
83.
The experimental results described for the (R,R)-3 toluene
gel show that coupled equilibria comprising network-assembly/
dissolution of (R,aR,R)-3 and diastereomer interconversion are
involved, giving gels with dramatically different properties in
different (10–2 and 10–3
M) concentration ranges. At lower con-
[3] a) D. K. Smith, Chem. Soc. Rev. 2009, 38, 684–694; b) A. Brizard, R. Oda,
I. Huc, Top. Curr. Chem. 2005, 256, 167–218.
centrations, gelation is very slow, and needs 9 d of ageing at
+4 °C to reach equilibrium (Figure 10). The formation such long-
lived nonequilibrium states could be explained by kinetic ef-
fects, due to a slow nongelling-to-gelling diastereomer inter-
conversion step becoming the rate-determining step at certain
concentrations. It was also found that gelation could be greatly
accelerated by sonication. This, together with the DSC results,
which indicate the formation of two kinds of aggregates, sug-
gest the formation of nonproductive assemblies of gel-forming
(R,aR,R)-3 or nongelling (R,aS,R)-3 diastereomers. The described
gelation of toluene by (R,R)-3 represents a highly complex and
unique gelation system comprising central-to-axial chirality
transfer, diastereomer interconversion, diastereoselective self-
sorting, and multiple coupled equilibria. It gives equilibrated
and long-lived nonequilibrium gel systems, depending on the
gelator concentration. A detailed understanding of such dy-
namic systems of higher complexity could be of the utmost
interest for the future design of soft materials and systems for
advanced applications.
[4] a) M. Liu, L. Zhang, T. Wang, Chem. Rev. 2015, 115, 7304–7397; b) Z. Shen,
T. Wang, M. Liu, Langmuir 2014, 30, 10772–10778; c) X. Luo, B. Liu, Y.
Liang, Chem. Commun. 2001, 1556–1557; d) J. Makarević, M. Jokić, Z.
Raza, Z. Štefanić, B. Kojić-Prodić, M. Žinić, Chem. Eur. J. 2003, 9, 5567–
5580; e) V. Čaplar, M. Žinić, J.-L. Pozzo, F. Fages, G. Mieden-Gundert, F.
Vögtle, Eur. J. Org. Chem. 2004, 19, 4048–4059.
[5] C. Wang, D. Zhang, D. Zhu, Langmuir 2007, 23, 1478–1482.
[6] B. Escuder, M. LLusar, J. F. Miravet, J. Org. Chem. 2006, 71, 7747–7752.
[7] J. Makarević, Z. Štefanić, L. Horvat, M. Žinić, Chem. Commun. 2012, 48,
7407–7409.
[8] a) S. Superchi, R. Bisaccia, D. Casarini, A. Laurita, C. Rosini, J. Am. Chem.
Soc. 2006, 128, 6893–6902; b) E. Manna, A. Montero, M. A. Maestro, B.
Herradon, Helv. Chim. Acta 2002, 85, 3624–3638; c) B. Herradon, A. Mon-
tero, E. Manna, M. A. Maestro, CrystEngComm 2004, 6, 512–521.
[9] R. E. Moore, A. Furst, J. Org. Chem. 1958, 23, 1504–1506.
[10] a) X. Luo, B. Liu, Y. Liang, Chem. Commun. 2001, 1556–1557; b) J. Makar-
ević, M. Jokić, Z. Raza, Z. Štefanić, B. Kojić-Prodić, M. Žinić, Chem. Eur. J.
2003, 9, 5567–5580; c) V. Čaplar, M. Žinić, J.-L. Pozzo, F. Fages, G. Mieden-
Gundert, F. Vögtle, Eur. J. Org. Chem. 2004, 4048–4059.
[11] H. Suzuki, Electronic Absorption Spectra and Geometry of Organic Mol-
ecules, Academic Press, New York, 1967, p. 262 and 272.
[12] K. Mislow, E. Bunnenberg, R. Records, K. Wellman, C. Djerassi, J. Am.
Chem. Soc. 1963, 85, 1342–1349.
[13] J.-P. Mazaleyrat, K. Wright, A. Gaucher, N. Toulemonde, M. Wakselman, S.
Oancea, C. Peggion, F. Formaggio, V. Setnicka, T. A. Keiderling, C. Toniolo,
J. Am. Chem. Soc. 2004, 126, 12874–12879.
[14] T. Mori, Y. Inoue, S. Grimme, J. Phys. Chem. A 2007, 111, 4222–4234.
[15] C. Bustamante, I. Tinolo Jr., M. F. Maestreo, Proc. Natl. Acad. Sci. USA 1983,
80, 3568–3572.
Supporting Information (see footnote on the first page of this
article): Equipment, procedures, and experimental conditions; tem-
perature-dependent FTIR spectra, DSC spectra, NOESY spectra of
gel samples, NMR spectra of synthesized compounds.
[16] a) J. Makarević, M. Jokić, B. Perić, V. Tomišić, B. Kojić-Prodić, M. Žinić,
Chem. Eur. J. 2001, 7, 3328–3341; b) B. Escuder, M. Llusar, J. F. Miravet, J.
Org. Chem. 2006, 71, 7747–7752; c) A. R. Hirst, I. A. Coates, T. R. Bouche-
teau, J. F. Miravet, B. Escuder, V. Castelletto, I. W. Hamley, D. K. Smith, J.
Am. Chem. Soc. 2008, 130, 9113–9121.
Acknowledgments
This work was supported by the Croatian Ministry of Science,
Education and Sports (project number 098-0982904-2912) and
Eur. J. Org. Chem. 2016, 1205–1214
1213
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim