10.1002/cssc.201902096
ChemSusChem
This work was supported by the National Natural Science Foundation of China
(No. 21676243, 21476204).
Besides xylose, other C5 monosaccharides such as arabinose can
also be efficiently converted to MLE using our proposed 1, 3, 5-
trioxane-added strategy (Table 2, entry 10). Also, a C5
polysaccharide - xylan (Table 2, entry 11) equally displays high
conversion efficiency to MLE (46.0%), which can be attributed
to fast acid-catalyzed hydrolysis of xylan to xylose.[3f] For C6
monosaccharides and disaccharides (Table 2, entry 3-8), the
high conversion efficiency to MLE exhibited without the
addition of 1, 3, 5-trioxane, additionally collaborates our claim
that this new addition strategy is only favorable for
hydroxymethylation reaction. The mixture of glucose and
xylose afforded high MLE yield of 50.4% (Table 2, entry 12)
which is similar to the calculated average yield of 49.6% based
on their respective entries in Table 2.
Keywords: biomass conversion · methyl levulinate · zeolites · C5 &
C6 sugars · 1, 3, 5-Trioxane
[1] a) A. Chareonlimkun, V. Champreda, A. Shotipruk, N. Laosiripojana,
Fuel 2010, 89, 2873-2880; b) G. C. Zhang, J. J. Liu, I. I. Kong, S.
Kwak, Y. S. Jin, Curr. Opin. Chem. Biol. 2015, 29, 49-57; c) P. J.
Dauenhauer, G. W. Huber, Green Chem. 2014, 16, 382-383.
[2] X. Hu, S. Wang, L. Wu, D. Dong, M. Mahmudul Hasan, C. Z. Li, Fuel
Process. Technol. 2014, 126, 315-323.
[3] a) R. Sahu, P. L. Dhepe, ChemSusChem 2012, 5, 751-761; b) X. Wu, J.
Fu, X. Lu, Carbohyd. Res. 2012, 358, 37-39; c) X. Wu, J. Fu, X. Lu,
Bioresour. Technol. 2012, 119, 48-54; d) X. Zhang, P. Murria, Y.
Jiang, W. Xiao, H. I. Kenttämaa, M. M. Abu-Omar, N. S. Mosier,
Green Chem. 2016, 18, 5219-5229; e) X. Hu, S. Jiang, L. Wu, S.
Wang, C. Z. Li, Chem. Commun. 2017, 53, 2938-2941; f) Y. Yang, C.
W. Hu, M. M. Abu-Omar, ChemSusChem 2012, 5, 405-410.
[4] X. Lu, J. Fu, T. Langrish, X. Lu, BioResources 2018, 13, 3627-3641.
[5] a) V. Choudhary, S. H. Mushrif, C. Ho, A. Anderko, V. Nikolakis, N.
S. Marinkovic, A. I. Frenkel, S. I. Sandler, D. G. Vlachos, J. Am.
Chem. Soc. 2013, 135, 3997-4006; b) L. Qi, Y. F. Mui, S. W. Lo, M. Y.
Lui, G. R. Akien, I. n. T. Horvꢀth, ACS Catal. 2014, 4, 1470-1477; c)
E. Nikolla, Y. Román-Leshkov, M. Moliner, M. E. Davis, ACS Catal.
2011, 1, 408-410; d) B. M. Matsagar, S. A. Hossain, T. Islam, H. R.
Alamri, Z. A. Alothman, Y. Yamauchi, P. L. Dhepe, K. C. W. Wu, Sci.
Rep. 2017, 7, 13508; e) L. Peng, L. Lin, H. Li, Ind. Crop. Prod. 2012,
40, 136-144.
[6] a) H. Chen, H. Ruan, X. Lu, J. Fu, T. Langrish, X. Lu, Chem. Eng. J.
2018, 333, 434-442; b) B. Chen, F. Li, Z. Huang, T. Lu, Y. Yuan, G.
Yuan, ChemSusChem 2014, 7, 202-209; c) S. Zhu, Y. Cen, J. Guo, J.
Chai, J. Wang, W. Fan, Green Chem. 2016, 18, 5667-5675.
[7] J. Du, J. Zhang, Y. Sun, W. Jia, Z. Si, H. Gao, X. Tang, X. Zeng, T.
Lei, S. Liu, J. Catal. 2018, 368, 69-78.
[8] X. Hu, Y. Song, L. Wu, M. Gholizadeh, C.-Z. Li, ACS Sustain. Chem.
Eng. 2013, 1, 1593-1599.
[9] a) L. Yang, G. Tsilomelekis, S. Caratzoulas, D. G. Vlachos,
ChemSusChem 2015, 8, 1334-1341; b) S. S. Chen, L. Wang, K. Iris, D.
C. Tsang, A. J. Hunt, F. Jérôme, S. Zhang, Y. S. Ok, C. S. Poon,
Bioresour. Technol. 2018, 247, 387-394.
[10] J. Lecomte, A. Finiels, C. Moreau, Ind. Crop Prod. 1999, 9, 235-241.
[11] a) F. D. Pileidis, M. M. Titirici, ChemSusChem 2016, 9, 562-582; b) D.
Song, S. An, Y. Sun, Y. Guo, J. Catal. 2016, 333, 184-199; c) Z.
Zhang, K. Dong, Z. Zhao, ChemSusChem 2011, 4, 112-118.
[12] a) S. Dutta, S. De, B. Saha, M. I. Alam, Catal. Sci. Technol. 2012, 2,
2025-2036; b) R. Xing, W. Qi, G. W. Huber, Energy Environ. Sci.
2011, 4, 2193-2205.
[13] X. Hu, C. Lievens, C. Z. Li, ChemSusChem 2012, 5, 1427-1434.
[14] a) H. Xu, Y. Li, B. Xu, Y. Cao, X. Feng, M. Sun, M. Gong, Y. Chen, J.
Ind. Eng. Chem. 2016, 36, 334-345; b) Z. Chen, S. Liu, H. Wang, Q.
Ning, H. Zhang, Y. Yun, J. Ren, Y. W. Li, J. Catal. 2018, 361, 177-
185.
[15] a) Z. Zhang, J. A. Schott, M. Liu, H. Chen, X. Lu, B. G. Sumpter, J.
Fu, S. Dai, Angew. Chem. 2019, 131, 265-269; b) Z. Zhang, H. Cheng,
H. Chen, K. Chen, X. Lu, P. Ouyang, J. Fu, Bioresour. Technol. 2018,
256, 241-246.
[16] Y. B. Huang, T. Yang, M. C. Zhou, H. Pan, Y. Fu, Green. Chem. 2016,
18, 1516-1523.
Table 2. Catalytic conversion of different sugars to MLE.
Entry
1
2
Reactant
Xylose
MLE yield/%
47.4
Xylose a
4.9
3
4
5
6
7
8
9
Glucose
48.3
51.8
53.5
60.8
63.9
66.0
43.8
Glucose a
Fructose
Fructose a
Mannose a
Sucrose a
MDX
10
11
12
Arabinose
Xylan
48.3
46.0
50.4
Glucose + xylose b
Reaction condition: 0.06 g reactant, 0.42 g 1, 3, 5-trioxane, 0.12 g Hβ, 6 mL
methanol, 160 oC for 18 h. aIn the absence of the 1, 3, 5-trioxane; b0.03 g
glucose, 0.03 g xylose and 0.21 g 1, 3, 5-trioxane.
Summarily, the present study involved the development of an
alternative pathway in which one-pot conversion of C5 sugars into
MLE can be accomplised over an optimized Hβ catalyst with the
addition of 1, 3, 5-trioxane at near-critical methanol conditions.
Unlike the traditional upgrading of hemicellulose-derived C5 sugars
into MLE, our new conversion strategy is very less complex and
does not require H2 and hydrogenation reaction; instead, it involves
hydroxymethylation reaction of FAL derivative and formaldehyde
to produce HMF derivative, in which formaldehyde is derived from
the consumption of 1, 3, 5-trioxane. The entire reactions can be
catalyzed by acid catalysts with both high Lewis and Brønsted acid
sites densities, such as Hβ. The effect of catalyst types, 1, 3, 5-
trioxane and Hβ loadings, reaction temperature and time on the
conversion of xylose were investigated for optimum MLE yield. The
highest MLE yield realized was 47.4%. The Hβ catalyst can be
regenerated by mere calcination to remove carbon deposition, and
then reused for at least five cycles without significant drop in
activity. In addition to xylose, other C5 monosaccharides and
polysaccharide are also efficiently converted to MLE with the help
of 1, 3, 5-trioxane. More importantly, a high MLE yield of 50.4% is
observed from the simultaneous conversion of C5 and C6 sugars via
this 1, 3, 5-trioxane-added conversion strategy. We believe that this
new conversion strategy holds great promises for simultaneous
conversion of cellulose and hemicellulose into MLE.
[17] V. Choudhary, S. I. Sandler, D. G. Vlachos, ACS Catal. 2012, 2, 2022-
2028.
Received: ((will be filled in by the editorial staff))
[18] W. Li, C. Pan, Q. Zhang, Z. Liu, J. Peng, P. Chen, H. Lou, X. Zheng,
Bioresour. Technol. 2011, 102, 4884-4889.
Published online on ((will be filled in by the editorial staff))
[19] T. Grützner, H. Hasse, J. Chem. Eng. Data 2004, 49, 642-646.
Acknowledgements
4
This article is protected by copyright. All rights reserved.