Mendeleev Commun., 2019, 29, 655–657
are easily isolated by sequential washing the crude precipitate
Online Supplementary Materials
with ethyl acetate and methanol. The isolated yields of the
products are not quantitative due to probable losses during
purification and the insignificant polymerization of hydroxy
alkynals 1. The steric hindrance slightly affects the yields of
products. Products 3d,h bearing hydroxycyclohexyl substituent
were isolated in 72–73% yield. Compounds 3a–h turned to be
poorly soluble in most organic solvents.
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2019.11.017.
References
1
(a) M. C. Pirrung and K. D. Sarma, J. Am. Chem. Soc., 2004, 126, 444;
(b)A. Domling, Chem. Rev., 2006, 106, 17; (c) H. Ohno,Y. Ohta, S. Oishi
and N. Fujii, Angew. Chem., Int. Ed., 2007, 46, 2295; (d) J.Yu, F. Shi and
L.-Z. Gong, Acc. Chem. Res., 2011, 44, 1156; (e) I. Monfardini,
J. W. Huang, B. Beck, J. F. Cellitti, M. Pellecchia andA. Domling, J. Med.
Chem., 2011, 54, 890; ( f) A. Domling, W. Wang and K. Wang, Chem.
Rev., 2012, 112, 3083; (g) X. Guo and W. Hu, Acc. Chem. Res., 2013,
The structures of the hydroxyalkylated 5-(1H-1,2,3-triazol-
1
13
4
-ylmethylidene)barbiturates 3a-h have been proven by H,
C
1
NMR and IR spectra. In the H NMR spectra, alkyl protons of
alcohol moieties, NMe groups (for 3e-h) resonate at 3.18-
4
6, 2427; (h) R. C. Cioc, E. Ruijter and R. V. A. Orru, Green Chem.,
–
3.16 ppm, and olefinic proton =CH resonates at 9.94-9.05 ppm.
2014, 16, 2958; (i) P. Singh and K. N. Singh, Org. Biomol. Chem., 2018,
16, 9084.
1
3
In the C NMR spectra, the carbonyl carbons resonate in the
region of 170.1-165.0, 164.1-158.6 and 152.4-149.7 ppm, the sig-
nals of the =CH and triazole carbons appear at 162.9-158.1 ppm,
2
3
4
(a) J. Sunderhaus and S. Martin, Chem. Eur. J., 2009, 15, 1300;
(
2
(
b) B. Jiang, T. Rajale, W. Wever, S. Tu and G. Li, Chem. Asian J., 2010, 5,
318; (c) R. P. Gore and A. P. Rajput, Drug Invent. Today, 2013, 5, 148;
d) G. M. Ziarani, F. Aleali and N. Lashgari, RSC Adv., 2016, 6, 50895.
1
60.3-150.0 and 137.1-134.4 ppm, respectively.
Apparently, the first step of three-component reaction involves
(a) C. Viegas-Jr, A. Danuello, V. da Silva Bolzani, E. J. Barreiro and
C. A. Fraga, Curr. Med. Chem., 2007, 14, 1829; (b) S. B. Tsogoeva, Mini-
Rev. Med. Chem., 2010, 10, 773; (c) K. Nepali, S. Sharma, M. Sharma,
P. M. S. Bedi and K. L. Dhar, Eur. J. Med. Chem., 2014, 77, 422.
(a) P. S. García, M. K. Whalin and P. S. Sebel, in Pharmacology and
Physiology for Anesthesia: Foundations and Clinical Application, 2nd
edn., eds. H. C. Hemmings and T. D. Egan, Elsevier, Philadelphia, 2019,
ch. 9, pp. 137–158; (b) M. C. Smith and B. J. Riskin, Drugs, 1991, 42,
365; (c) F. López-Muñoz, R. Ucha-Udabe and C.Alamo, Neuropsychiatr.
Dis. Treat., 2005, 1, 329; (d) N. Siddiqui and W. Ahsan, Arch. Pharm.
Chem. Life Sci., 2009, 342, 462.
1
,3-dipolar cycloaddition of hydroxyalkynals 1 and trimethylsilyl
azide to create intermediate 5-(hydroxyalkyl)triazolecarbalde-
hyde A (see Scheme 1) as previously described.1
8(a)
The next step is
a Knoevenagel condensation between aldehyde A and barbituric
acids 2.
The transformation is best processed with the sequential
loadingofthereactantsbecausetheirsimultaneousadministration
makes the reaction non-selective. The Knoevenagel reaction
between 4-hydroxyalkynals and barbituric acids proceeds at a
higher rate resulting in adducts having a weakly polarized triple
bond, which would interfere with the cycloaddition of
trimethylsilyl azide.
5
6
(a) V. Padmavathi, G. D. Reddy, B. C. Venkatesh and A. Padmaja, Arch.
Pharm. Chem. Life Sci., 2011, 11, 165; (b) M. M. Ibrahim, S. Al-Juaid,
M. A. Mohamed and M. H. Yassin, J. Coord. Chem., 2012, 65, 2957;
(
c) A. M. Qureshi, M. Qadir, A. Rauf, M. Idrees, S. Mumtaz,
The effect of aqueous medium on reaction is the spontaneous
non-catalyzed reversible hydration of the aldehyde group with
the in situ formation of intermediate gem-diols (quantitative
M. Najamul-Haq, M. Ismail, M. Athar, R. Khushal, S. Riaz and
H. Bokhari, Lett. Drug Des. Discovery, 2011, 8, 980; (d) Q.Yan, R. Cao,
W. Yi, Z. Chen, H. Wen, L. Ma and H. Song, Eur. J. Med. Chem., 2009,
44, 4235.
(a) H. B. Demopoulos, E. S. Flamm and M. L. Seligman, Acta Neurol.
Scand., 1977, 56, 152; (b) K. M. Khan, M. Ali, A. Ajaz, S. Perveen,
M. I. Choudhary and A. U. Rahman, Lett. Drug Des. Discovery, 2008, 5,
286; (c) B. B. Sokmen, S. Ugras, H. Y. Sarikaya, H. I. Ugras and
R.Yanardag, Appl. Biochem. Biotechnol., 2013, 171, 2030; (d) R.Almaas,
O. D. Saugstad, D. Pleasure and T. Rootwelt, Anesthesiology, 2000, 92,
1
determination of the aldehyde/gem-diol forms in water by H NMR
2
0
was performed ), which increases the solubility and reduces the
polymerization of initial 4-hydroxyalkynals 1.
In summary, eco-friendly one-pot synthesis of hydroxyalkyl-
containing 5-(1H-1,2,3-triazol-4-ylmethylidene)barbiturates has
beenaccomplishedingoodyieldsbycatalyst-freethree-component
reaction of hydroxyalkynals, trimethylsilyl azide and barbuturic
acids in aqueous medium.A simple route involves the 1,3-dipolar
cycloaddition and subsequent Knovenegel condensation as the
key steps. The synthesized hybrid molecules containing two
important pharmacophores can be of interest as potential bio-
active compounds and synthons in organic synthesis to produce
new drugs, polydentate ligands for metal complexes, and
fluorophores to create new materials.
764; (e) K. M. Moon, B. Lee, J. W. Jeong, D. H. Kim,Y. J. Park, H. R. Kim,
J.Y. Park, M. J. Kim, H. J.An, E. K. Lee,Y. M. Ha, E. Im, P. Chun, J.Y. Ma,
W.-K. Cho, H. R. Moon and H. Y. Chung, Oncotarget, 2017, 8, 91662.
G. C. Harriman, M. Brewer, R. Bennett, C. Kuhnb, M. Bazin, G. Larosa,
P. Skerker, N. Cochran, D. Gallant, D. Baxter, D. Picarella, B. Jaffee,
J. R. Luly and M. J. Briskin, Bioorg. Med. Chem. Lett., 2008, 18, 2509.
J. S. Biradar, B. S. Sasidhar and R. Parveen, Eur. J. Med. Chem., 2010,
7
8
9
4
5, 4074.
(a) B. B. Ivanova and M. Spiteller, Cryst. Growth Des., 2010, 10, 2470;
b) K. Kondo, S. Ochiai and K. Takemoto, Appl. Phys. Lett., 1990, 57, 101.
(
1
1
0 (a) E. Fırıncı, E. Giziroglu, D. B. Celepci, H. C. Söyleyici and M.Aygün,
J. Mol. Struct., 2017, 1137, 113; (b) K. T. Mahmudov, M. N. Kopylovich,
A. M. Maharramov, M. M. Kurbanova, A. V. Gurbanov and
A. J. L. Pombeiro, Coord. Chem. Rev., 2014, 265, 1.
The main results were obtained using the equipment of Baikal
analytical center of collective using SB RAS.
1 (a) S. G. Agalave, S. R. Maujan and V. S. Pore, Chem. Asian J., 2011, 6,
mixture was stirred at room temperature for 18 h. Then a solution of
barbituric acid 2 (1 mmol) in ethanol (4 ml) was added, and the mixture
was stirred at room temperature for 20 h. The precipitate formed was
collected on a filter, washed with water and cold methanol and dried at
reduced pressure.
2
696; (b) S. Haider, M. S. Alam and H. Hamid, Inflammation Cell
Signaling, 2014, 1; (c) D. Dheer, V. Singh and R. Shankar, Bioorg.
Chem., 2017, 71, 30; (d) F. C. da Silva, M. F. C. Cardoso, P. G. Ferreira
and V. F. Ferreira, Top. Heterocycl. Chem., 2014, 40, 117.
1
2 (a) M. J. O’Mahony, R. J. Willis, US Patent 5064844, 1991; (b) X.-B. Chen,
D.-Q. Shi and X.-F. Zhu, Chin. J. Chem., 2007, 25, 1854; (c) Z.-C. Dai,
Y.-F. Chen, M. Zhang, S.-K. Li, T.-T. Yang, L. Shen, J.-X. Wang,
S.-S. Qian, H.-L. Zhu andY.-H. Ye, Org. Biomol. Chem., 2015, 13, 477;
5
-{[4-(1-Hydroxy-1-methylethyl)-1H-1,2,3-triazol-5-yl]methylidene}-
pyrimidine-2,4,6(1H,3H,5H)-trione 3a. Yield 220 mg (82%). Colourless
1
powder, mp > 260°C (decomp.). H NMR (400.13 MHz, DMSO-d ) d:
6
1
9
5.57(br.s, 1H, NH), 11.67[br.s, 1H, NH(C=O)], 11.50[br.s, 1H, NH(C=O)],
(d)A.V. Costa, M.V. L. Oliveira, R.T. Pinto, L. C. Moreira, E. M. C. Gomes,
13
.11 (s, 1H, HC=), 5.62 (br.s, 1H, OH), 1.58 (s, 6H, 2Me). C NMR
T. A. Alves, P. F. Pinheiro, V. T. Queiroz, L. F. A. Vieira, R. R. Teixeira
and W. C. J. Júnior, Molecules, 2017, 22, 1666.
8
12
(
(
(
101.62 MHz, DMSO-d ) d: 169.9 (C ), 163.8 (C ), 162.5 (CH=), 159.6
C ), 149.7 (C ), 136.8 (C ), 116.3 (C ), 69.7 (C-OH), 31.6 (Me). IR
KBr, n/cm ): 3476, 3415, 3196, 3086, 2983, 2850, 2789, 1742, 1674,
6
4
10
5
7
13 (a) M. A. Quraishi and R. Sardar, Corrosion, 2002, 58, 748;
(b) M. A. Quraishi, Sudheer, K. R. Ansari and E. E. Ebenso, Int. J.
Electrochem. Sci., 2012, 7, 7476; (c) P. S. Desai and N. S. Indorwala,
Int. J. Curr. Microbiol. Appl. Sci., 2015, 4, 928; (d) S. U. Ofoegbu,
T. L. P. Galvão, J. R. B. Gomes, J.Tedim, H. I. S. Nogueira, M. G. S. Ferreira
–1
1
8
4
598, 1517, 1410, 1379, 1315, 1223, 1172, 1122, 1092, 1069, 994, 959,
57, 798, 753, 681, 649, 612, 564, 513, 481, 421. Found (%): C, 45.39; H,
.03; N, 26.34. Calc. for C H N O (%): C, 45.29; H, 4.18; N, 26.41.
10
11
5
4
–
656 –