3
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
3
4
X. Zhang, S. Cao, Tetrahedron Lett. 2017, 58, 375.
1
2
3
4
5
6
7
8
9
we
found
that
Pd(OAc)2,
1,1'-bis(di-tert-
butylphosphino)ferrocene (DtBPF), K3PO4, and H2O in
toluene at 60 °C provided the desired coupling product 2aa
in 39% overall yield. With these optimized reaction
conditions, the substrate scope for aryl bromides 4 was
investigated. Taking into consideration the instability and
purification difficulty of pinacol boronates 1 and 3, a
stoichiometric amount of aryl boronic acid (Ar1-B(OH)2) was
used as starting material to proceed with the subsequent
a) W. B. Motherwell, M. J. Tozer, B. C. Ross, J. Chem. Soc., Chem.
Commun. 1989, 1437. b) B. V. Nguyen, D. J. Burton, J. Org.
Chem. 1997, 62, 7758. c) L. Zhu, Y. Li, Y. Zhao, J. Hu,
Tetrahedron Lett. 2010, 51, 6150. d) B. Gao, Y. Zhao, C. Ni, J.
Hu, Org. Lett. 2014, 16, 102. e) P. Tian, C.-Q. Wang, S.-H. Cai,
S. Song, L. Ye, C. Feng, T.-P. Loh, J. Am. Chem. Soc. 2016, 138,
15869. f) H.-J. Tang, L.-Z. Lin, C. Feng, T.-P. Loh, Angew. Chem.,
Int. Ed., 2017, 56, 9872. g) L. Yang, W.-X. Fan, E. Lin, D.-H. Tan,
Q. Li, H. Wang, Chem. Commun. 2018, 54, 5907. h) J. Hu, Y.
Yang, Z. Lou, C. Ni, J. Hu, Chin. J. Chem. 2018, 36, 1202. i) H.
Liu, L. Ge, D.-X. Wang, N. Chen, C. Feng, Angew. Chem. Int. Ed.
2019, 58, 3918.
a) T. Taguchi, T. Morikawa, O. Kitagawa, T. Mishima, Y.
Kobayashi, Chem. Pharm. Bull. 1985, 33, 5137. b) M. Fujita, M.
Obayashi, T. Hiyama, Tetrahedron Lett. 1988, 44, 4135. c) G.-Q.
Shi, X.-H. Huang, Tetrahedron Lett. 1996, 37, 5401. d) T.
Yamazaki, H. Ueki, T. Kitazume, Chem. Commun. 2002, 2670. e)
H. Ueki, T. Chiba, T. Yamazaki, T. Kitazume, J. Org. Chem. 2004,
69, 7616. f) H. Ueki, T. Chiba, T. Yamazaki, T. Kitazume,
Tetrahedron 2005, 61, 11141. g) P. R. Mears, E. J. Thomas,
Tetrahedron Lett. 2015, 56, 3980. h) X. Yang, Z.-H. Cao, Y. Zhou,
F. Cheng, Z.-W. Lin, Z. Ou, Y. Yuan, Y.-Y. Huang, Org. Lett.
2018, 20, 2585. i) X. Yang, F. Zhang, Y. Zhou, Y.-Y. Huang, Org.
Biomol. Chem. 2018, 16, 3367. j) J. Yang, J. Wang, H. Huang, G.
Qin, Y. Jiang, T. Xiao, Org. Lett. 2019, 21, 2654. k) G. Chen, C.
Li, J. Peng, Z. Yuan, P. Liu, X. Liu, Org. Biomol. Chem. 2019, 17,
8527. l) L. Tang, Z.-Y. Liu, We. She, C. Feng, Chem. Sci. 2019,
10, 8701.
a) S.-I. Hayashi, T. Nakai, N. Ichikawa, D. J. Burton, D. G. Naae,
H. S. Kesling, Chem. Lett. 1979, 8, 983. b) J. Ichikawa, Y. Wada,
T. Okauchi, T. Minami, Chem. Commun. 1997, 1537. c) M.
Yokota, D. Fujita, J. Ichikawa, Org. Lett. 2007, 9, 4639. d) T. Mori,
J. Ichikawa, Synlett 2007, 7, 1169. e) G. Landelle, M. Bergeron,
M.-O. Turcotte-Savard, J.-F. Paquin, Chem. Soc. Rev. 2011, 40,
2867. f) J. Wu, J. Xiao, W. Dai, S. Cao, RSC Adv. 2015, 5, 34498.
g) R. Kojima, K. Kubota, H. Ito, Chem. Commun. 2017, 53, 10688.
h) J. Hu, X. Han, Y. Yuan, Z. Shi, Angew. Chem. Int. Ed. 2017,
56, 13342. i) Q. Ma, Y. Wang, G. C. Tsui, Angew. Chem. Int. Ed.
2020, 59, 11293. j) N. Suzuki, T. Fujita, J. Ichikawa, Org. Lett.
2015, 17, 4984. k) X. Zhang, Y. Lin, J. Zhang, S. Cao, RSC Adv.
2015, 5, 7905. l) G. Jin, X. Zhang, D. Fu, W. Dai, S. Cao,
Tetrahedron 2015, 71, 7892. m) K. Fuchibe, T. Morikawa, R.
Ueda, T. Okauchi, J. Ichikawa, J. Fluorine Chem. 2015, 179, 106.
n) J. Zhang, C. Xu, W. Wu, S. Cao, Chem. Eur. J. 2016, 22, 9902.
o) J. Xie, J. Yu, M. Rudolph, F. Rominger, A. S. K. Hashmi,
Angew. Chem. Int. Ed. 2016, 55, 9416. p) Xi. Lu, Y. Wang, B.
Zhang, J.-J. Pi, X.-X. Wang, T.-J. Gong, B. Xiao, Y. Fu, J. Am.
Chem. Soc. 2017, 139, 12632. q) J. Li, Q. Lefebvre, H. Yang, Y.
Zhao, H. Fu, Chem. Commun. 2017, 53, 10299. r) K. Fuchibe, R.
Takayama, T. Aono, J. Hu, T. Hidano, H. Sasagawa, M. Fujiwara,
S. Miyazaki, R. Nadano, J. Ichikawa, Synthesis 2018, 50, 514. s)
L. Yu, M.-L. Tang, C.-M. Si, Z. Meng, Y. Liang, J. Han, X. Sun,
Org. Lett. 2018, 20, 4579. t) A. Kondoh, K. Koda, M. Terada, Org.
Lett. 2019, 21, 2277. u) L.-F. Jiang, B.-T. Ren, B. Li, G.-Y. Zhang,
Y. Peng, Z.-Y. Guan, Q.-H. Deng, J. Org. Chem. 2019, 84, 6557.
v) Y.-C. Ma, Y. Zhang, C.-Z. Gu, G.-F. Du, L. He, New J. Chem.
2019, 43, 10985. w) H. Yang, C. Tian, D. Qiu, H. Tian, G. An, G.
Li, Org. Chem. Front. 2019, 6, 2365. x) H. Tian, Q. Xia, Q. Wang,
J. Dong, Y. Liu, Q. Wang, Org. Lett. 2019, 21, 4585. y) C. Zhu,
Y.-F. Zhang, Z.-Y. Liu, L. Zhou, H. Liu, C. Feng, Chem. Sci. 2019,
10, 6721. z) Q. Wang, Y. Qu, H. Tian, Y. Liu, H. Song, Q. Wang,
Chem. Eur. J. 2019, 25, 8686. aa) H.-W. Du, J. Sun, Q.-S. Gao, J.-
Y. Wang, H. Wang, Z. Xu, M.-D. Zhou, Org. Lett. 2020, 22, 1542.
a) S.-I. Hayashi, T. Nakai, N. Ishikawa, Chem. Lett. 1980, 9, 651.
b) J. Ichikawa, M. Yokota, T. Kudo, S. Umezaki, Angew. Chem.,
Int. Ed. 2008, 47, 4870. c) H. Tanabe, J. Ichikawa, Chem. Lett.
2010, 39, 248. d) R. Loska, K. Szachowicz, D. Szydlik, Org. Lett.
2013, 15, 5706. e) R. Loska, P. Bukowska, Org. Biomol. Chem.
2015, 13, 9872.
10 reactions to afford coupling products 2. When using 1a,
11 electron-donating and -withdrawing groups substituted aryl
12 bromides 4a-c were well-tolerated in the coupling reaction to
13 provide the corresponding diaryl gem-difluorovinyl products
14 2 in good yields (2aa–ac). Besides, 1-bromonaphthalene (4d)
15 with 1a also proceeded with the coupling reaction under
16 optimal reaction conditions to afford the corresponding
17 diaryl-gem-difluorovinyl-product (2ad: 23%). 4-Bromo-o-
18 xylene (4e) with 1a gave the desired product in lower yield
19 (2ae: 18%). The aryl bromide with a methyl ester moiety 4f
20 was also tolerated and accepted for the coupling reaction with
21 1a to furnish product 2af in 36% yield. We further examined
22 the substrate scope on gem-difluorovinyl boronates 1.
23 Electron-donating phenoxy-substituted gem-difluorovinyl
24 boronates 1b, electron-withdrawing chloro-substituted 1c, 1d,
25 and aryl-substituted 1e were transformed with p-
26 methoxyphenyl bromide (4a) into the corresponding
27 unsymmetrical diaryl gem-difluorovinyl compounds 2ba,
28 2ca, 2da and 2ea at an acceptable overall yield of 21-34%,
29 independent of the substitution of the Ar1 group of 2.
5
6
30
In summary, we report a feasible method for the
31 synthesis of aryl gem-difluorovinyl boronates 1, and
32 subsequent access to unsymmetrical diaryl gem-difluorovinyl
33 products 2 via the Pd-catalyzed Suzuki-Miyaura cross-
34 coupling reaction. While the aryl gem-difluorovinyl
35 pinacolboronates 1 were found to be unstable, they can be
36 straightforwardly synthesized from readily available 103
37 trifluorodiazoethane and aryl boronic acids followed by LDA
38 treatment. The wide synthetic application of aryl gem-
39 difluorovinyl boronates 1 for a variety of coupling reactions
40 is expected.
41
42 JSPS KAKENHI supported this work grants JP 18H02553
43 (KIBAN B).
44
45 Supporting
46 http://dx.doi.org/10.1246/cl.******.
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Information
is
available
on
47 References and Notes
48
49
50
51
52
53
54
55
56
57
58
59
60
1
a) M. Inoue, Y. Sumii, N. Shibata, ACS Omega 2020, 5, 10633. b)
Y. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai, N. Shibata,
iScience 2020, 23, 101467.
2
a) C. Isanbor, D. O’Hagan, J. Fluorine Chem. 2006, 127, 303. b)
S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc.
Rev. 2008, 37, 320. c) J. Wang, M. Sánchez-Roselló, J. L. Aceña,
C. Del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H.
Liu, Chem. Rev. 2014, 114, 2432. d) E. A. Ilardi, E. Vitaku, J. T.
Njardarson, J. Med. Chem. 2014, 57, 2832. e) E. P. Gillis, K. J.
Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med.
Chem. 2015, 58, 8315. f) S. Swallow, Prog. Med. Chem. 2015, 54,
65. g) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V.
A. Soloshonok, K. Izawa, H. Liu, Chem. Rev. 2016, 116, 422.
7