Um et al.
stepwise mechanism over a concerted pathway, although some
SCHEME 2
(
studies failed to identify the transition state and T for
aminolysis of various carboxylic esters.6
-9
The curvature center of curved Brønsted plots indicates a
1
0-12
change in RDS, and this center was defined as pKa°.
Gresser
o
and Jencks reported that the pKa increases as the substituent
in the nonleaving group changes from an electron-donating
group (EDG) to an electron-withdrawing group (EWG) for
1
0
reactions of diaryl carbonates with a series of quinuclidines.
This has been rationalized on the basis that departure of the
(
amine from T (i.e., k-1 step; Scheme 1) is favored, over that
of the leaving group (i.e., k2 step; Scheme 1), as the substituent
in the nonleaving group becomes a stronger EWG.1 Castro et
al. found a comparable result in pyridinolysis of 2,4-dinitro-
0
o
pKa and the k2/k-1 ratio both remain nearly constant even as
the substituent X in the benzoyl moiety is progressively modified
from an EWG to an EDG.
The electronic nature of the substituent X in the nonleaving
group would be anticipated to influence both the k2 and k-1
values, i.e., an EWG in the nonleaving group would retard the
departure of the leaving group (decrease k2) as well as the amine
also decrease k-1) from T , while an EDG in the nonleaving
group would accelerate both k2 and k-1 processes since the
nucleofuge departs with the bonding electron pair from T .
Accordingly, one can predict that the k2/k-1 ratio should be
independent of the substituent X in the nonleaving group. This
argument is consistent with our finding that pKa and the k2/
k-1 ratio remain nearly constant on changing the electronic
nature of the substituent X for the reactions mentioned above.
To obtain further information about the pKa , we extended
o
phenyl X-substituted benzoates; hence, pKa ) 9.5 when X )
13-15
The explanation is as follows.
o
11
H but pKa > 9.5 when X ) 4-Cl, 4-CN, or 4-NO2 and
similarly for S-2,4-dinitrophenyl X-substituted thiobenzoates in
o
aqueous ethanol, where pKa increases from 8.5 to 8.9 and 9.9
1
2
as X is changed from 4-CH3 to H and 4-NO2, in turn. Thus,
it has been concluded that changing the substituent in the
nonleaving group from an EDG to an EWG results in an increase
(
(
o
10-12
in pKa by decreasing the k2/k-1 ratio.
(
o
However, we have shown that the pKa value is independent
of the electronic nature of the substituent X in the nonleaving
group for aminolysis of 2,4-dinitrophenyl X-substituted ben-
zoates and benzenesulfonates.1 A similar result has recently
been found for reactions of Y-substituted phenyl X-substituted
benzoates with piperidine.15 Further, we have shown that the
o
3,14
o
our study to reactions of 4-nitrophenyl benzoate (1c) and O-4-
nitrophenyl X-substituted thionobenzoates (2a-e) using a series
of pyridines whose pKa values range from 5.09 to 11.30 (Scheme
(
3) (a) Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005,
7
0, 5624-5629. (b) Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol.
Chem. 2005, 3, 1240-1244. (c) Oh, H. K.; Park, J. E.; Sung, D. D.; Lee,
I. J. Org. Chem. 2004, 69, 9285-9288. (d) Oh, H. K.; Park, J. E.; Sung, D.
D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153. (e) Oh, H. K.; Ku, M. H.;
Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877.
2
). Replacement of O by a polarizable S atom in the carbonyl
bond of 1c should provide insights into both the reactivity and
the comparative reaction mechanism. We probed the effect of
modification of the electrophilic center (CdO to CdS) on
(4) (a) Baxter, N. J.; Rigoreau, L. J. M.; Laws, A. P.; Page. M. I. J. Am.
Chem. Soc. 2000, 122, 3375-3385. (b) Spillane, W. J.; McGrath, P.; Brack,
C.; O’Byrne, A. B. J. Org. Chem. 2001, 66, 6313-6316. (c) Gordon, I.
M.; Maskill, H.; Ruasse, M. F. Chem. Soc. ReV. 1989, 18, 123-151.
o
reactivity, reaction mechanism, and, notably, pKa and report
the kinetic results herein. In addition to our Brønsted analysis
we analyzed the substituent effects according to the dual-
parameter Yukawa-Tsuno equation. This combined approach
has previously proven effective in elucidating mechanistic
ambiguities in acyl group transfer reactions.
(
5) (a) Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-
1
2
243. (b) Um, I. H.; Kim, E. J; Park, H. R.; Jeon, S. E. J. Org. Chem.
006, 71, 2302-2306. (c) Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.;
Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987. (d) Um, I. H.;
Han, H. J.; Baek, M. H.; Bae, S. K. J. Org. Chem. 2004, 69, 6365-6370.
(
e) Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69,
2
436-2441. (f) Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org.
Chem. 2003, 68, 7742-7746.
6) (a) Galabov, B.; Atanasov, Y; Ilieva, S.; Schaefer, H. F., III. J. Phys.
Results and Discussion
(
Chem. A 2005, 109, 11470-11474. (b) Ilieva, S.; Galabov, B.; Musaev, D.
Reactions of O-4-nitrophenyl X-substituted thionobenzoates
with pyridines proceeded with quantitative liberation of 4-ni-
trophenoxide (and/or its conjugate acid). The reactions were
followed by monitoring the appearance of 4-nitrophenoxide at
410 nm. Kinetic study was performed under pseudo-first-order
conditions; the pyridine concentration was always in excess over
that of substrate. All reactions obeyed first-order kinetics over
90% of the total reaction. Pseudo-first-order rate constants (kobsd)
were determined from the equation ln(A∞ - At) ) -kobsdt + C.
The plots of kobsd vs the pyridine concentration showed excellent
linearity (see Supporting Information for detailed kinetic data).
The plots had only small intercept values, indicating that the
G.; Morokuma, K.; Schaefer, H. F., III. J. Org. Chem. 2003, 68, 1496-
1
502.
(
(
(
7) Yang, W.; Drueckhammer, Org. Lett. 2000, 2, 4133-4136.
8) Zipse, H.; Wang, L.; Houk, K. N. Liebigs Ann. 1996, 1511-1522.
9) (a) Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557-567. (b)
Lee, I.; Lee, H. W.; Lee, B. C.; Choi, J. H. Bull. Korean Chem. Soc. 2002,
2
3, 201-204. (c) Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org.
Chem. 2002, 67, 2215-2222.
(10) Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-
6
980.
(
11) (a) Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-
3
1
2
600. (b) Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-
672. (c) Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 1983,
, 453-457.
(12) (a) Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org.
-
contribution of H2O or OH ion from the hydrolysis of pyridines
Chem. 2005, 70, 7788-7791. (b) Castro, E. A.; Aguayo, R.; Bessolo, J.;
Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536. (c) Castro, E. A.;
Vivanco, M.; Aguayo, R.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004,
(14) (a) Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70,
1438-1444. (b) Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno,
Y. J. Org. Chem. 2004, 69, 3166-3172. (c) Um, I. H.; Hong, J. Y.; Kim,
J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185.
(15) Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006,
71, 5800-5803.
6
2
9, 5399-5404. (d) Castro, E. A.; Aguayo, R.; Santos, J. G. J. Org. Chem.
003, 68, 8157-8161.
(13) (a) Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J.
Org. Chem. 2004, 69, 3937-3942. (b) Um, I. H.; Min, J. S.; Ahn, J. A.;
Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663.
9192 J. Org. Chem., Vol. 71, No. 24, 2006