10.1002/cctc.202001362
ChemCatChem
FULL PAPER
Typically, a calculated amount of Co@NCP (5.7 mol% of Co) and o-
nitroanilines (0.2 mmol) in toluene (1 mL) were placed in a 25 mL sealed
tube, and 1, 2-propanediol (0.6 mmol) was added to the mixture under
nitrogen atmosphere with a magnetic to initiate the reaction at 140°C for
12 h. After the reaction completed, the mixtures were cooled to ambient
temperature and EtOAc (5 mL) was added to the sealed tube. After the
catalyst was separated by magnetic force, the organic solution was
collected and concentrated in vacuum. Then, the obtained residue was
analyzed by GC/MS and purified by column chromatography. The yield of
the product was determined by GC with hexadecane as an internal
standard. The recyclability of the Co@NCP was investigated under the
same reaction conditions by using the recovered catalysts. After each
cycle, the catalyst was isolated from the solution by external magnet,
washed three times with methanol, and dried under vacuum to remove the
residual solvent and then reused for another reaction cycle.
[16] F. Xie, M. Zhang, H. Jiang, M. Chen, W. Lv, A. Zheng, X. Jian, Green
Chem. 2015, 17, 279-284.
[17] K. Chakrabarti, M. Maji, S. Kundu, Green Chem. 2019, 21, 1999-2004.
[18] a) M. Zhang, X. Fang, H. Neumann, M. Beller, J. Am. Chem. Soc. 2013,
135, 11384-11388; b) M. Zhang, H. Neumann, M. Beller, Angew. Chem.
Int. Ed. 2013, 52, 597-601.
[19] a) K. Das, A. Mondal, D. Srimani, Chem. Commun. 2018, 54, 10582-
10585.; b) P. Daw, A. Kumar, N. A. Espinosa-Jalapa, Y. Diskin-Posner,
Y. Ben-David, D. Milstein, ACS Catal. 2018, 8, 7734-7741; c) S. Shee, K.
Ganguli, K. Jana, S. Kundu, Chem. Commun. 2018, 54, 6883-6886.
[20] B. Guo, H.-X. Li, S.-Q. Zhang, D. J. Young, J.-P. Lang, ChemCatChem
2018, 10, 5627-5636.
[21] a) H. Yang, R. Nie, W. Xia, X. Yu, D. Jin, X. Lu, D. Zhou, Q. Xia, Green
Chem. 2017, 19, 5714-5722; b) J. Wang, R. Nie, L. Xu, X. Lyu, X. Lu,
Green Chem. 2019, 21, 314-320; c) A. K. Kar, R. Srivastava, ACS
Sustainable Chem. Eng. 2019, 7, 13136-13147.
[22] J. Wan, Z. Zhao, H. Shang, B. Peng, W. Chen, J. Pei, L. Zheng, J. Dong,
R. Cao, R. Sarangi, Z. Jiang, D. Zhou, Z. Zhuang, J. Zhang, D. Wang, Y.
Li, J. Am. Chem. Soc. 2020, 142, 8431-8439.
Acknowledgements
[23] C. Ren, L. Wen, S. Magagula, Q. Jiang, W. Lin, Y. Zhang, Z. Chen, K.
Ding, ChemCatChem 2019, 12, 536-543.
We gratefully acknowledge the Fundamental Research Funds for
the Central Universities (30920021120), Key Laboratory of
Biomass Energy and Material, Jiangsu Province (JSBEM201912),
the National Natural Science Foundation of China (21905089)
[24] Y. Duan, T. Song, X. Dong, Y. Yang, Green Chem. 2018, 20, 2821-2828.
[25] a) S. Wang, H. Jang, J. Wang, Z. Wu, X. Liu, J. Cho, ChemSusChem
2019, 12, 830-838; b) Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529-
1541; c) J. Zhang, J. Fang, J. Han, T. Yan, L. Shi, D. Zhang, J. Mater.
Chem. A 2018, 6, 15245-15252; d) X. Hu, M. Fan, Y. Zhu, Q. Zhu, Q.
Song, Z. Dong, Green Chem. 2019, 21, 5274-5283; e) Y. Shi, B. Zhang,
Chem. Soc. Rev. 2016, 45, 1529-1541; f) T. Zhang, T. Asefa, Adv. Mater.
2019, 31, 1804394.
and
the
Chinese
Postdoctoral
Science
Foundation
(2019M662775) for financial support. This work was a project
funded by the Priority Academic Program development of Jiangsu
Higher Education Institution.
[26] W. Zhong, H. Liu, C. Bai, S. Liao, Y. Li, ACS Catal. 2015, 5, 1850-1856.
[27] a) Y. Wang, S. Sang, W. Zhu, L. Gao, G. Xiao, Chem. Eng. J. 2016, 299,
104-111; b) K.-k. Sun, J.-l. Sun, G.-P. Lu, C. Cai, Green Chem. 2019, 21,
4334-4340.
Keywords: hydrogen auto-transfer • quinoxalines • N, P co-
doped carbon • heterogeneous cobalt catalyst • in-situ doping-
carbonization
[28] D. Das, K. K. Nanda, Nano Energy 2016, 30, 303-311.
[29] Z. R. Dong, Y. Y. Li, J. S. Chen, B. Z. Li, Y. Xing, J. X. Gao, Org. Lett.
2005, 7, 1043-1045.
[1]
[2]
[3]
X. Hui, J. Desrivot, C. Bories, P. M. Loiseau, X. Franck, R. Hocquemiller,
B. Figadere, Bioorg. Med. Chem. Lett. 2006, 16, 815-820.
R. Sarges, H. R. Howard, R. G. Browne, L. A. Lebel, P. A. Seymour, B.
K. Koe, J. Med. Chem. 1990, 33, 2240-2254.
[30] Y. Han, Z. Wang, R. Xu, W. Zhang, W. Chen, L. Zheng, J. Zhang, J. Luo,
K. Wu, Y. Zhu, C. Chen, Q. Peng, Q. Liu, P. Hu, D. Wang, Y. Li, Angew.
Chem. Int. Ed. 2018, 57, 11262-11266.
[31] L. Hu, Y. Hu, R. Liu, Y. Mao, M. S. Balogun, Y. Tong, Int. J. Hydrogen
Energy 2019, 44, 11402-11410.
B. D. Lindner, Y. Zhang, S. Höfle, N. Berger, C. Teusch, M. Jesper, K. I.
Hardcastle, X. Qian, U. Lemmer, A. Colsmann, U. H. F. Bunz, M.
Hamburger, J. Mater. Chem. C 2013, 1, 5718.
[32] a) M. Zhuang, X. Ou, Y. Dou, L. Zhang, Q. Zhang, R. Wu, Y. Ding, M.
Shao, Z. Luo, Nano Lett. 2016, 16, 4691-4698; b) Y. Yang, D. Huo, H.
Wu, X. Wang, J. Yang, M. Bian, Y. Ma, C. Hou, Sens. Actuators: B 2018,
274, 296-303; c) W. Li, Y. Chen, B. Yu, Y. Hu, X. Wang, D. Yang,
Nanoscale 2019, 11, 17031-17040; d) R. Liu, H. Zhang, X. Zhang, T. Wu,
H. Zhao, G. Wang, RSC Adv. 2017, 7, 19181-19188.
[4]
[5]
T. Hille, T. Irrgang, R. Kempe, Chem.-Eur. J. 2014, 20, 5569-5572.
Y. B. Kim, Y. H. Kim, J. Y. Park, S. K. Kim, Bioorg. Med. Chem. Lett.
2004, 14, 541-544.
[6]
[7]
S. D. Undevia, F. Innocenti, J. Ramirez, L. House, A. A. Desai, L. A.
Skoog, D. A. Singh, T. Karrison, H. L. Kindler, M. J. Ratain, Eur. J.
Cancer 2008, 44, 1684-1692.
[33] B. Qiu, C. Yang, W. Guo, Y. Xu, Z. Liang, D. Ma, R. Zou, J. Mater. Chem.
A 2017, 5, 8081-8086.
a) J. L. Sessler, H. Maeda, T. Mizuno, V. M. Lynch, H. Furuta, J. Am.
Chem. Soc. 2002, 124, 13474-13479; b) M. Ayaz, Z. Xu, C. Hulme,
Tetrahedron Lett. 2014, 55, 3406-3409.
[34] W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy Environ.
Sci. 2014, 7, 379-386.
[35] J. Li, J. Zhang, S. Wang, G. Xu, H. Wang, D. G. Vlachos, ACS Catal.
2019, 9, 1564-1577.
[8]
[9]
S. Y. Kim, K. H. Park, Y. K. Chung, Chem. Commun. 2005, 10 1321-
1323.
[36] a) S. Das, S. Mallick, S. De Sarkar, J. Org. Chem. 2019, 84, 12111-
12119; b) X. Li, R. Hu, Y. Tong, Q. Pan, D. Miao, S. Han, Tetrahedron
Lett. 2016, 57, 4645-4649.
D. Aparicio, O. A. Attanasi, P. Filippone, R. Ignacio, S. Lillini, F. Mantellini,
F. Palacios, J. M. de Los Santos, J. Org. Chem. 2006, 71, 5897-5905.
[10] S. Antoniotti, E. Duñach, Tetrahedron Lett. 2002, 43, 3971-3973.
[11] B. Kundu, S. K. Singh, P. Gupta, S. Duggineni, Synlett 2003, 14, 2147-
2150.
[12] a) G. W. Huber, S. Iborra, A. Corma, Chem. Rev. 2006, 106, 4044-4098;
b) K.-k. Sun, G.-p. Lu, J.-w. Zhang, C. Cai, Dalton Trans. 2017, 46,
11884-11889; c) M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 2014, 114,
1827-1870.
[13] a) Y. Obora, ACS Catal. 2014, 4, 3972-3981; b) Q. Yang, Q. Wang, Z.
Yu, Chem. Soc. Rev. 2015, 44, 2305-2329.
[14] M. Mastalir, M. Glatz, E. Pittenauer, G. Allmaier, K. Kirchner, Org. Lett.
2019, 21, 1116-1120.
[15] D. Lv, Z. Xie, B. Gu, H. Wu, H. Wan, Russ. J. Gen. Chem. 2017, 86,
2887-2890.
8
This article is protected by copyright. All rights reserved.