A. V. Levanov et al.
FULL PAPER
1226–1228; b) A. R. Gromov, E. E. Antipenko, B. V. Strakhov,
Zh. Fiz. Khim. 1990, 64, 77–82; Russ. J. Phys. Chem. 1990, 64,
40–43.
T. V. Yagodovskaya, L. I. Nekrasov, Zh. Fiz. Khim. 1964, 38,
1750–1756; Russ. J. Phys. Chem. 1964, 38, 953–956; T. V. Yago-
dovskaya, L. I. Nekrasov, Zh. Fiz. Khim. 1966, 40, 1304–1312;
Russ. J. Phys. Chem. 1966, 40, 698–702.
P. A. Giguère, K. Herman, Can. J. Chem. 1970, 48, 3473–3482;
X. Deglise, P. A. Giguère, Can. J. Chem. 1971, 49, 2242–2247;
J. L. Arnau, P. A. Giguère, Can. J. Chem. 1973, 51, 1525–1529.
J. L. Arnau, P. A. Giguère, J. Chem. Phys. 1974, 60, 270–273.
A. Engdahl, B. Nelander, Science 2002, 295, 482–483.
T.-L. Tso, E. K. C. Lee, J. Phys. Chem. 1985, 89, 1618–1631.
J. T. Fermann, B. C. Huffman, G. S. Tschumper, H. F.
Schaefer III, J. Chem. Phys. 1997, 106, 5102–5108.
J. L. Arnau, P. A. Giguère, M. Abe, R. C. Taylor, Spectrochim.
Acta Part A 1974, 30, 777–796.
the quantity of molecular oxygen evolved on condensate decompo-
sition, and (3) the condensate composition is nonuniform along its
height.
[19]
[20]
Supporting Information (see footnote on the first page of this arti-
cle): Illustration of the deconvolution of the composite peak at ap-
proximately 880 cm–1 in the Raman spectra of peroxy radical con-
densates; description of the calculation methods; optimized struc-
tures for HOOH, HOOOH, HOOOOH calculated in this work.
[21]
[22]
[23]
[24]
Acknowledgments
This work was supported by the Russian Foundation for Basic Re-
search (grant # 09-03-00630-a).
[25]
[26]
[1] Polyoxides HOOOH and HOOOOH, as well as radical com-
plexes (OH), (HO2) and (HO2)2; see, for example: a) A. J. El-
liot, G. V. Buxton, J. Chem. Soc. Faraday Trans. 1992, 88,
2465–2470; b) M. A. Vincent, I. H. Hillier, J. Phys. Chem. 1995,
99, 3109–3113; c) X. Xu, R. P. Muller, W. A. Goddard III,
Proc. Natl. Acad. Sci. USA 2002, 99, 3376–3381; d) R. Zhu,
M. C. Lin, PhysChemComm 2001, 23, 1–6; e) R. Zhu, M. C.
Lin, Chem. Phys. Lett. 2002, 354, 217–226; f) M. C. Foti, S.
Sortino, K. U. Ingold, Chem. Eur. J. 2005, 11, 1942–1948; g)
J. M. Anglada, S. Olivella, A. Sole, J. Phys. Chem. A 2007, 111,
1695–1704.
[2] P. T. Nyffeler, N. A. Boyle, L. Eltepu, C. H. Wong, A. Esch-
enmoser, R. A. Lerner, P. Wentworth Jr., Angew. Chem. 2004,
116, 4756–4759; Angew. Chem. Int. Ed. 2004, 43, 4656–4659.
[3] B. Plesnicˇar, Acta Chim. Slov. 2005, 52, 1–12, and references
cited therein; A. Bergant, J. Cerkovnik, B. Plesnicˇar, T. Tuttle,
J. Am. Chem. Soc. 2008, 130, 14086–14087.
I. I. Skorokhodov, V. B. Golubev, L. I. Nekrasov, V. B. Evdoki-
mov, N. I. Kobozev, Zh. Fiz. Khim. 1962, 36, 93–97; Russ. J.
Phys. Chem. 1962, 36, 47–49; M. Y. Antipin, E. E. Antipenko,
B. V. Strakhov, E. V. Lunina, L. I. Nekrasov, Zh. Fiz. Khim.
1977, 51, 3064–3067.
[27] In principle, H2OO (isomeric hydrogen peroxide, oxywater) and
·
(HO2)2 (cyclic dimer of the HO2 radical) should be taken into
account as possible components of peroxy radical condensates.
However, the calculated vibrational spectra available from the
literature allow us to exclude these compounds from consider-
ation. Indeed, the vibrational spectrum of H2OO should have
only one band due to oxygen framework oscillations (harmonic
frequency 665 cm–1) (H. H. Huang, Y. Xie, H. F. Schaefer III,
J. Phys. Chem. 1996, 100, 6076–6080). The spectrum of
(HO2)2 should have three Raman-active oscillations (harmonic
frequencies 1233, 230, 182 cm–1) whose frequencies do not es-
sentially change on substitution of deuterium for hydrogen
(J. T. Fermann, B. C. Huffman, G. S. Tschumper, H. F.
Schaefer III, J. Chem. Phys. 1997, 106, 5102–5108). Lines with
these features are not present in our spectra.
[4] R. A. Lerner, A. Eschenmoser, Proc. Natl. Acad. Sci. USA
2003, 100, 3013–3015, and references cited therein; X. Zhu, P.
Wentworth Jr., A. D. Wentworth, A. Eschenmoser, R. A. Ler-
ner, I. A. Wilson, Proc. Natl. Acad. Sci. USA 2004, 101, 2247–
2252.
[28] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morok-
uma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzew-
ski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.
Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W.
Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03 (Re-
vision E.01), Gaussian, Inc., Wallingford, CT, 2004.
[29] P. A. Denis, F. R. Ornellas, J. Phys. Chem. A 2009, 113, 499–
506.
[5] D. J. Mckay, J. S. Wright, J. Am. Chem. Soc. 1998, 120, 1003–
1013.
[6] K. Suma, Y. Sumiyoshi, Y. Endo, J. Am. Chem. Soc. 2005, 127,
14998–14999.
[7] M. Berthelot, Compt. Rend. 1880, 90, 656.
[8] D. I. Mendeleev, Osnovy Khimii, 6th ed., V. Demakov Printing
House, St. Petersburg, 1895, p. 151.
[9] M. Venugopalan, R. A. Jones, Chemistry of Dissociated Water
Vapor and Related Systems, Interscience Publishers, New
York – London – Sydney, 1968.
[10] E. Boehm, K. F. Bonhoeffer, Z. Phys. Chem. 1926, 119, 385–
399.
[11] G. I. Lavin, F. B. Stewart, Proc. Natl. Acad. Sci. USA 1929, 15,
829–832.
[12] A. K. Brewer, J. W. Westhaver, J. Phys. Chem. 1930, 34, 2343–
2355.
[13] K. H. Geib, P. Harteck, Ber. Deutsch. Chem. Ges. 1932, B65,
1551–1555.
[14] E. Ohara, J. Chem. Soc. Jpn. 1940, 61, 569–582.
[15] N. I. Kobozev, L. I. Nekrasov, E. N. Eremin, Zh. Fiz. Khim.
1956, 30, 2580–2581; N. I. Kobozev, I. I. Skorokhodov, L. I.
Nekrasov, E. I. Makarova, Zh. Fiz. Khim. 1957, 31, 1843–1850.
[16] a) A. B. Tsentsiper, M. S. Danilova, A. S. Kanishcheva, A. I.
Gorbanev, Zh. Neorg. Khim. 1959, 4, 1952–1957; Russ. J. Inorg.
Chem. 1959, 4, 886–889; b) J. A. Wojtowicz, F. Martinez, J. A.
Zaslowksy, J. Phys. Chem. 1963, 67, 849–852.
[30] P. A. Giguère, Chemistry 1975, 48, 20–22.
[31] F. C. Fehsenfeld, K. M. Evenson, H. P. Broida, Rev. Sci. In-
strum. 1965, 36, 294–298.
[32] PeakFit, Software for Peak Separation and Analysis, version
4.12, SeaSolve Software Inc., SYSTAT Software Inc., San Jose,
CA, 2003.
[17] I. I. Skorokhodov, L. I. Nekrasov, N. I. Kobozev, V. B. Evdoki-
mov, Zh. Fiz. Khim. 1962, 36, 274–281; Russ. J. Phys. Chem.
1962, 36, 136–140.
[18] a) O. Yu. Berezin, E. E. Antipenko, B. V. Strakhov, Zh. Fiz.
Khim. 1980, 54, 2145–2147; Russ. J. Phys. Chem. 1980, 54,
[33] See for example: A. I. Vogel (Ed.), Vogel’s Textbook of Quanti-
tative Chemical Analysis, 5th ed., Longman Group UK Lim-
ited, Harlow (Essex, England), 1989, pp. 372–373.
Received: July 23, 2011
Published Online: October 18, 2011
5150
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 5144–5150