Reduction of ␣-Tocopherolquinone by NQO1
305
occurs with a prevalence of ϳ6% in whites and ϳ18% in the
Chinese (40). Our data suggest that individuals lacking ex-
pression of NQO1 may have a decreased capacity to protect
against cellular oxidative damage, and this may have impli-
cations for chemoprotection and chemoprevention.
In summary, NQO1 has classically been considered a de-
toxification enzyme because of its role in the reduction of
exogenous quinone substrates to their hydroquinone forms,
thus bypassing reactive semiquinone radical formation. The
␣-tocopherol a reservoir for ␣-tocopheryl hydroquinone? Free Rad. Biol.
Med. 19:197–207 (1995).
0. Hayashi, T., A. Kanetoshi, M. Nakamura, M. Tamura, and H. Shirahama.
Reduction of ␣-tocopherolquinone to ␣-tocopherolhydroquinone in rat
hepatocytes. Biochem Pharmacol. 44:489–493 (1992).
1. Gustafson, D. L., H. D. Beall, E. M. Bolton, D. Ross, and C. A. Waldren.
Expression of human NAD(P)H:quinone oxidoreductase (DT-diaphorase)
in Chinese hamster ovary cells: effect on the toxicity of antitumor quino-
nes. Mol. Pharmacol. 50:728–735 (1996).
2. Beall, H. D., R. T. Mulcahy, D. Siegel, R. D. Traver, N. W. Gibson, and D.
Ross. Metabolism of bioreductive antitumor compounds by purified rat and
human DT-diaphorases. Cancer Res. 54:3196–3201 (1994).
2
2
2
ability of NQO1 to efficiently reduce TQ to TQH , however, 23. Siegel, D., N. W. Gibson, P. C. Preusch, and D. Ross. Metabolism of
2
mitomycin C by DT-diaphorase: role in mitomycin C-induced DNA damage
suggests that one of the physiological functions of NQO1 may
and cytotoxicity in human colon carcinoma cells. Cancer Res. 50:7483–
be to regenerate antioxidant forms of ␣-tocopherol.
7489 (1990).
2
4. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein
measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275
References
(1951).
1
2
. Ernster, L. DT-diaphorase. Methods Enzymol. 10:309–317 (1967).
. Edwards, Y. H., J. Potter, and D. A. Hopkinson. Human FAD-dependent
NAD(P)H diaphorase. Biochem. J. 187:429–436 (1980).
. Lind, C., E. Cadenas, P. Hochstein, and L. Ernster. Purification properties
and function. Methods Enzymol. 186:287–301 (1990).
. Lind, C., P. Hochstein, and L. Ernster. DT-diaphorase as a quinone reduc-
tase: a cellular control device against semiquinone and superoxide radical
formation. Arch. Biochem. Biophys. 216:178–185 (1982).
2
5. Liebler, D. C., J. A. Burr, J. A., L. Philips, and A. J. L. Ham. Gas
chromatography-mass spectrometry analysis of vitamin E and its oxida-
tion products. Anal. Biochem. 236:27–34 (1996).
26. Buege, J. A., and S. D. Aust. Microsomal lipid peroxidation. Methods
Enzymol. 52:302–310 (1977).
27. Subrahmanyam, V. V., L. G. McGirr, and P. J. O’Brien. Oxygen activation
during drug metabolism. Pharmacol. Ther. 33:63–72 (1987).
28. Canuto, R. A., G. Muzio, M. E. Biocca, and M. U. Dianzani. Lipid peroxi-
dation in AH-130 hepatoma cells enriched in vitro with arachidonic acid.
Cancer Res. 51:4603–4608 (1991).
29. Wermuth, B. Purification and properties of an NAD(P)H-dependent car-
bonyl reductase from human brain. J. Biol. Chem. 256:1206–1213 (1981).
30. Liepkalns, V. A., C. Icard-Liepkalns, and D. G. Cornwell. Regulation of cell
division in a human glioma cell clone by arachidonic acid and ␣-toco-
pherolquinone. Cancer Lett. 15:173–178 (1982).
3
4
5
6
. Thor, H., M. T. Smith, P. Hartzell, G. Bellomo, S. A. Jewell, and S.
Orrenius. The metabolism of menadione (2-methyl-1,4-naphthoquinone)
by isolated hepatocytes. J. Biol. Chem. 257:12419–12425 (1982).
. Talalay, P., M. J. De Long, and H. J. Prochaska. Identification of a common
chemical signal regulating the induction of enzymes that protect against
chemical carcinogenesis. Proc. Natl. Acad. Sci. USA 85:8261–8265 (1988).
. Talalay, P., and A. M. Benson. Elevation of quinone reductase activity by
anticarcinogenic antioxidants. Adv. Enz. Reg. 20:287–300 (1981).
. Benson, A. M., M. J. Hunkeler, and P. Talalay. Increase of NAD(P)H:
quinone reductase by dietary antioxidants: possible role in protection
against carcinogenesis and toxicity. Proc. Natl. Acad. Sci. USA 77:5216–
7
8
31. Morisaki, N., J. A. Lindsey, J. M. Stitts, H. Zhang, and D. G. Cornwell.
Fatty acid metabolism and cell proliferation. Lipids 19:381–394 (1984).
2. Lindsey, J. A., H. Zhang, H. Kaseki, N. Morisaki, T. Sato, and D. G.
3
3
3
3
5220 (1980).
Cornwell. Antioxidant effects of tocopherols and their quinones. Lipids
9
. Talalay, P., and H. J. Prochaska. Mechanism of induction of NAD(P)H:
quinone reductase. Chem. Scripta 27A:61–66 (1987).
2
0:151–157 (1985).
3. Thornton, D. E., K. H. Jones, Z. Jiang, H. Zhang, G. Liu, and D. G.
Cornwell. Antioxidant and cytotoxic tocopheryl quinones in normal and
cancer cells. Free Rad. Biol. Med. 18:963–976 (1995).
1
1
1
0. Thomas, D. J., A. Sadler, V. V. Subrahmanyam, D. Siegel, M. J. Reasor, D.
Wierda, and D. Ross. Bone marrow stromal cell bioactivation and detoxi-
fication of the benzene metabolite hydroquinone: comparison of macro-
phages and fibroblastoid cells. Mol. Pharmacol. 37:255–262 (1990).
1. Huggins, C., and R. Fukunishi. Induced protection of adrenal cortex
against 7,12 dimethylbenzanthracene: influence of ethionine: induction of
menadione reductase. Incorporation of thymidine H3. J. Exp. Med. 119:
4. Cadenas, E., P. Hochstein, and L. Ernster. Pro- and antioxidant functions
of quinones and quinone reductases in mammalian cells. Adv. Enzymol.
6
5:97–146 (1992).
5. Liebler, D. C., K. L. Kaysen, and T. A. Kennedy. Redox cycles of vitamin E:
Hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxy)toco-
pherones. Biochemistry 28:9772–9777 (1989).
923–942 (1964).
2. Schiefer, H. G., and C. Martius. Uber die synthese von vitaminen der
K2-reihe und von ubichinonen (aus methylnaphthochinon bzw. dime-
thoxymethylbenzochinon) in zellkulturen. Biochem. Z. 333:454–462
3
3
6. Moore, A. N. J., and K. U. Ingold. ␣-Tocopherol quinone is converted into
vitamin E in man. Free Rad. Biol. Med. 22:931–934 (1997).
7. Traver, R. D., T. Horikoshi, K. D. Danenburg, T. H. W. Stadlbauer, P. V.
Danenburg, D. Ross, and N. W. Gibson. NAD(P)H:quinone oxidoreductase
gene expression in human colon carcinoma cells: characterization of a
mutation which modulates DT-diaphorase activity and mitomycin sensi-
tivity. Cancer Res. 52:797–802 (1992).
8. Traver, R. D., D. Siegel, H. D. Beall, R. M. Phillips, N. W. Gibson, W. A.
Franklin, and D. Ross. Characterization of a polymorphism in NAD(P)H:
quinone oxidoreductase (DT-diaphorase). Br. J. Cancer 75:69–75 (1997).
39. Rosvold, E. A., K. A. McGlynn, E. D. Lustbader, and K. H. Buetow.
Identification of an NAD(P)H:quinone oxidoreductase polymorphism and
its association with lung cancer and smoking. Pharmacogenetics 5:199–
206 (1995).
(
1960).
1
1
1
1
3. Olson, R. E., A. L. Hall, C. Lee, and W. K. Kappel. Properties of the vitamin
K dependent ␥-glutamyl carboxylase from rat liver. Chem. Scripta 27A:
187–192 (1987).
4. Preusch, P. C., and D. M. Smalley. Vitamin K1 2,3-epoxide, and quinone
3
reduction: mechanism and inhibition. Free Rad. Res. Commun. 8:401–415
(
1990).
5. Boothman, D., M. Meyers, N. Fukunaga, and S. W. Lee. Isolation of x-ray
inducible transcripts from radioresistant human melanoma cells. Proc.
Natl. Acad. Sci. USA 90:7200–7204 (1993).
6. Beyer, R. E., J. Segura-Aguilar, S. Di Bernardo, M. Cavazzoni, R. Fato, D.
Fiorentini, M. Galli, M. Setti, L. Landi, and G. Lenaz. The role of DT-
diaphorase in the maintenance of the reduced antioxidant form of coen-
zyme Q in membrane systems. Proc. Natl. Acad. Sci. USA 93:2528–2532
40. Traver, R. D., N. Rothman, M. T. Smith, S. Y. Yin, R. B. Hayes, G. L. Li,
W. A. Franklin, and D. Ross. Incidence of a polymorphism in NAD(P)H:
quinone oxidoreductase (NQO1) (Abstract). Proc. Amer. Assoc. Cancer Res.
37:1894 (1996).
(
1996).
1
7. Liebler, D. C. The role of metabolism in the antioxidant function of vitamin
E. Crit. Rev. Toxicol. 23:147–169 (1993).
1
8. Bindoli, A., M. Valente, and L. Cavallini. Inhibition of lipid peroxidation by
Send reprint requests to: Dr. David Siegel, School of Pharmacy C238,
UCHSC, 4200 E. 9th Avenue, Denver, CO 80206. E-mail: david.siegel@
uchsc.edu
␣
-tocopherolquinone and ␣-tocopherolhydroquinone. Biochem. Int. 10:
753–761 (1985).
19. Kohar, I., M. Baca, C. Suarna, R. Stocker, and P. T. Southwell-Keely. Is