C O M M U N I C A T I O N S
Scheme 2
racemization much faster than the catalytic cross-coupling reaction,
and, after the asymmetric carbon-carbon bond formation, the
racemization does not take place. Studies on catalytic asymmetric
synthesis of various kinds of axially chiral biaryls using this type
of methodology are in progress.
Acknowledgment. This work was supported in part by a Grant-
in-Aid for Scientific Research from the Ministry of Education,
Science, Sports, and Culture, Japan.
Supporting Information Available: Experimental procedures,
spectroscopic and analytical data for the products (PDF). This material
Scheme 3 a
References
(1) (a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345. (b) Rosini, C.;
Franzini, L.; Raffaelli, A.; Salvadori, P. Synthesis 1992, 503. (c) Pu, L.
Chem. ReV. 1998, 98, 2405. (d) Hayashi, T. Acc. Chem. Res. 2000, 33,
354. (e) McCarthy, M.; Guiry, P. J. Tetrahedron 2001, 57, 3809.
(2) (a) Hayashi, T. In ComprehensiVe Asymmetric Catalysis; Jacobsen, E.
N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. II,
Chapter 25. (b) Ogasawara, M.; Hayashi, T. In Catalytic Asymmetric
Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000; Chapter
8F. (c) Hayashi, T. J. Organomet. Chem. 2002, 653, 41.
(3) (a) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. J. Am. Chem. Soc.
1988, 110, 8153. (b) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y.
Tetrahedron Lett. 1989, 30, 215.
(4) (a) Nicolaou, K. C.; Li, H.; Boddy, C. N. C.; Ramanjulu, J. M.; Yue,
T.-Y.; Natarajan, S.; Chu, X.-J.; Bra¨se, S.; Ru¨bsam, F. Chem.-Eur. J. 1999,
5, 2584. (b) Cammidge, A. N.; Cre´py, K. V. L. Chem. Commun. 2000,
1723. (c) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 12051.
(d) Castanet, A.-S.; Colobert, F.; Broutin, P.-E.; Obringer, M. Tetrahe-
dron: Asymmetry 2002, 13, 659.
(5) (a) Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y. J.
Am. Chem. Soc. 1995, 117, 9101. (b) Kamikawa, T.; Uozumi, Y.; Hayashi,
T. Tetrahedron Lett. 1996, 37, 3161. (c) Kamikawa, T.; Hayashi, T.
Tetrahedron 1999, 55, 3455.
a Reaction conditions: (a) MeI, K2CO3, acetone, room temperature, 99%;
(b) mCPBA, CH2Cl2, 0 °C, 92%; (c) EtMgBr, THF, room temperature; (d)
I2, room temperature, 67%; (e) (i) B(OMe)3, (ii) 10% HCl, (iii) pinacol,
benzene, reflux 48%; (f) Ph2PCl, room temperature, 62%; (g) Ni(acac)2,
MeMgI, THF, 50 °C, 76%.
(6) Wenkert, E.; Ferreira, T. W.; Michelotti, E. L. J. Chem. Soc., Chem.
Commun. 1979, 637.
(7) Fabbri, D.; Delogue, G.; De Lucchi, O. J. Org. Chem. 1993, 58, 1748.
(8) The energy barrier for flipping on an S-methyldinaphtho[2,1-b:1′,2′-d]-
thiophenium salt has been measured to be ∆Gq ) 48 kJ mol-1 at -33
°C. Assuming that 1 has a similar energy barrier, we calculated the half-
life for racemization to be shorter than 0.004 s: Fabbri, D.; Dore, A.;
Gladiali, S.; De Lucchi, O.; Valle, G. Gazz. Chim. Ital. 1996, 126, 11.
(9) (a) Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769. (b) Von
Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566. (c)
Dawson, G. J.; Frost, C. G.; Williams, J. M. J. Tetrahedron Lett. 1993,
34, 3149. (d) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336.
(10) Ni(acac)2 and NiBr2 can be used as well, although the reaction rate is a
little slower.
(11) THF is a solvent of choice because the dinaphthothiophene 1 is not soluble
in other solvents (benzene, toluene, or diethyl ether) usually used for the
Grignard cross-coupling.
(12) Hayashi, T.; Han, J.-W.; Takeda, A.; Tang, J.; Nohmi, K.; Mukaide, K.;
Tsuji, H.; Uozumi, Y. AdV. Synth. Catal. 2001, 343, 279.
(13) Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama,
S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976,
49, 1958.
diorganonickel intermediate 11, the reductive elimination from
which gives the cross-coupling product. The dependency of the
enantioselectivity on the Grignard reagent observed here may
indicate that the stereochemical outcome is determined at or after
the transmetalation step.
The axially chiral cross-coupling products 3 are versatile
intermediates for further transformation, the mercapto group being
replaced by some functional groups by way of the methylsulfinyl
group. Thus, the 2-methylsulfinylbinaphthyl 12, obtained by
methylation of the mercapto group in (S)-3b15 (95% ee) followed
by oxidation of the sulfide with peracid, was allowed to react with
ethylmagnesium bromide in THF16 to generate a binaphthylmag-
nesium bromide, treatment of which with electrophiles gave iodide
(S)-13, boronate (R)-14, and phosphine (S)-1515,17 without racem-
ization (Scheme 3). The substitution of the methylsulfinyl group
with an alkyl group is also possible by nickel-catalyzed cross-
coupling. For example, the cross-coupling of 12 with the methyl
Grignard reagent proceeded in refluxing THF to give a high yield
of the methylation product 16.
In conclusion, we have described a new efficient route to axially
chiral 1,1′-binaphthyls, which has been realized by nickel-catalyzed
asymmetric cross-coupling of dinaphthothiophene 1 with the
Grignard reagents. This asymmetric reaction is formally classified
as a dynamic kinetic resolution of the starting chiral substrate.18
The dinaphthothiophene 1 is a chiral molecule but undergoes
(14) The oxidative addition of a dibenzothiophene to a nickel(0) species forming
a nickelacycle complex has been reported: Vicic, D. A.; Jones, W. D. J.
Am. Chem. Soc. 1999, 121, 7606.
(15) The absolute configuration of the cross-coupling product 3b was
determined by comparison of the optical rotation value ([R]20 -137 (c
D
1.0, chloroform)) of the MOP ligand 15 obtained here with that ([R]20
D
+145 (c 1.0, chloroform)) of the authentic sample prepared from (R)-
binaphthol (ref 12).
(16) Hoffmann, R. W.; Ho¨lzer, B.; Knopff, O.; Harms, K. Angew. Chem., Int.
Ed. 2000, 39, 3072.
(17) The MOP ligand 15 is useful as a chiral ligand for the palladium-catalyzed
asymmetric hydrosilylation of 1,3-dienes (ref 12).
(18) Similar asymmetric ring-opening reactions of biaryl lactones have been
studied extensively by Bringmann: Bringmann, G.; Breuning, M.; Tasler,
S. Synthesis 1999, 525.
JA0282588
9
J. AM. CHEM. SOC. VOL. 124, NO. 45, 2002 13397