ChemComm
Communication
7 For reviews on enzymatic epoxidation of alkenes see: (a) M. Sono,
M. P. Roach, E. D. Coulter and J. H. Dawson, Chem. Rev., 1996, 96,
2841–2887; (b) P. R. Ortiz de Montellano and J. J. De Voss, Nat. Prod.
Rep., 2002, 19, 477–493.
and competitive alkyl group migration from a vinylidene inter-
mediate (note ¶¶, ESI†). Alcohol (1-13C)-7 was then converted to the
desired bromoallene (1-13C)-7 (as 4% of its 2-13C-isotopomer, ESI†)
as previously described (cf., Scheme 2).
´
8 For reviews see: (a) G. L’abbe, Angew. Chem., Int. Ed. Engl., 1980, 19,
276–289; (b) W. Smadja, Chem. Rev., 1983, 83, 263–320; (c) T. H. Chan
and B. S. Ong, Tetrahedron, 1980, 36, 2269–2289.
9 For the first isolated allene oxide and its thermal rearrangement to a
cyclopropanone see: R. L. Camp and F. D. Greene, J. Am. Chem. Soc.,
1968, 90, 7349.
10 For an early report on their synthesis and reactivity of 2-bromoox-
iranes see: (a) A. Hassner and P. Catsoulacos, J. Org. Chem., 1967, 32,
549–553; For a representative naturally occurring 2-bromooxirane
see: (b) K. Watanabe, M. Sekine and K. Iguchi, J. Nat. Prod., 2003, 66,
1434–1440.
11 There is a single report of a bromoallene oxide functionality: ethyl
2-bromo-3-(diphenylmethylene) oxirane-2-carboxylate was reported
in a study of ketenes and aliphatic diazo compounds: H. Staudinger
and T. Reber, Helv. Chim. Acta, 1921, 4, 3–23.
With (1-2H)-4 and (1-13C)-4 in hand, epoxidation with DMDO was
conducted. For deuterated (1-2H)-4, after the reaction was conducted
in the usual manner (cf., Scheme 1), E-(2-2H)-5 and Z-(2-2H)-5 were
isolated each showing 65% deuteration at the a-position only
(note ‡, ff, ESI†). Evidently, this result is consistent with the
proposed mechanism (cf., Fig. 2) (note †††, ESI†). More compel-
lingly, epoxidation of bromoallene (1-13C)-4 gave (E-2-13C)-533 and
(Z-2-13C)-5 (28% isolated yield) where carbon atoms 1 and 2 from
the bromoallene have entirely interchanged positions, giving also
4% of each of the (E-1-13C)-5 and (Z-1-13C)-5 isotopomers (ESI†). The
expected 1JCH coupling constants experienced by the a-vinyl protons
of the major isotopomers are clearly apparent in their 1H NMR
spectra (Fig. 3).
In conclusion we have established that the hitherto unknown
direct conversion of bromoallenes to a,b-unsaturated carboxylic
acids using DMDO is consistent with an initial epoxidation event
(note ***, ESI†) followed by a spontaneous reorganization via a
bromocyclopropanone, a mechanism supported by calculations,
in an intersecting bromoallene oxide – Favorskii manifold. These
experiments support the proposed biogenesis of a,b-unsaturated
carboxylate 3 from bromoallene 2 by epoxidation (note ‡‡‡, ESI†).
We thank the EPSRC for DTG funding (to J. C.).
12 P. C. Ravikumar, L. Yao and F. F. Fleming, J. Org. Chem., 2009, 74,
7294–7299.
´
13 See for example: D. C. Braddock, R. Bhuva, Y. Perez-Fuertes, R. Pouwer,
C. A. Roberts, A. Ruggiero, E. S. E. Stokes and A. J. P. White, Chem.
Commun., 2008, 1419–1421 and references cited therein.
14 J. K. Crandall, D. J. Batal, F. Lin, T. Reix, G. S. Nadol and R. A. Ng,
Tetrahedron, 1992, 48, 1427–1448 and references therein.
15 (a) R. W. Murray and M. Singh, Org. Synth., 1997, 74, 91. For the use
of cyclic ketones as dioxirane precursors see: (b) R. W. Murray,
M. Singh and R. Jeyaraman, J. Am. Chem. Soc., 1992, 114, 1346–1351.
16 For leading examples see: (a) M. Singh and R. W. Murray, J. Org.
Chem., 1992, 57, 4263–4270; (b) N. N. Kabal’nova, D. V. Kazakov, N. M.
Shishlov and V. V. Shereshovets, Russ. Chem. Bull., 1996, 45, 1481–1483.
17 For a review of the Favorskii reaction see: J. Mann, in Comprehensive
Organic Synthesis, ed. B. M. Trost, I. Fleming and G. Pattenden,
Pergamon Press, Oxford, 1991, vol. 3, ch. 3.7, pp. 839–859.
18 In a previous isolation from red algae Bonnemaisonia, both 1,1,3-
tribromo-2-ketones and their proposed Favorskii products – E- and
Z-3-bromo-2-alkenoic acids – were co-isolates: O. J. McConnell and
W. Fenical, Phytochemistry, 1980, 19, 233–247.
19 J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 6615–6620.
20 D. C. Braddock, J. Clarke and H. S. Rzepa, Figshare, 2013, DOI: 10.6084/
m9.figshare.785756 and the further digital repository links therein.
21 J. Downing, P. Murray-Rust, A. P. Tonge, P. Morgan, H. S. Rzepa,
F. Cotterill, N. Day and M. J. Harvey, J. Chem. Inf. Model., 2008, 48,
for the Amsterdam Manifesto on data citation principles.
22 D. Cremer and E. Kraka, Acc. Chem. Res., 2010, 43, 591–601; H. S.
Rzepa and C. Wentrup, J. Org. Chem., 2013, 78, 7565–7574.
23 Similar non-linear behavior of a bond is found in the related
dyotropic rearrangement of dibromoethanes; D. C. Braddock,
D. Roy, D. Lenoir, E. Moore, H. S. Rzepa, J. I.-C. Wu and P. von R.
Schleyer, Chem. Commun., 2012, 48, 8943–8945.
Notes and references
1 (a) J. W. Blunt, B. R. Copp, R. A. Keyzers, M. H. G. Munroa and
M. R. Prinsep, Nat. Prod. Rep., 2013, 30, 237–323 and earlier reviews
in this series; (b) B.-G. Wang, J. B. Gloer, N.-Y. Ji and J.-C. Zhao,
Chem. Rev., 2013, 113, 3632–3685.
2 For a comprehensive review of the synthesis of medium ring ethers
from Laurencia sp., see: (a) K. Fujiwara, Top. Heterocycl. Chem., 2006, 5,
97–148; (b) For recent leading examples see: B. S. Dyson, J. W. Burton,
T.-i. Sohn, B. Kim, H. Bae and D. Kim, J. Am. Chem. Soc., 2012, 134,
11781–11790(c) M. J. Kim, T.-i. Sohn, D. Kim and R. S. Paton, J. Am.
Chem. Soc., 2012, 134, 20178–20188 and references cited therein.
24 For pioneering labeling work to elucidate the mechanism of the
Favorskii rearrangement and to implicate a symmetrical intermedi-
ate, viz., a cyclopropanone see: R. B. Loftfield, J. Am. Chem. Soc.,
1951, 73, 4707–4714.
25 T. A. Grese, K. D. Hutchinson and L. E. Overman, J. Org. Chem.,
1993, 58, 2468–2477.
´
3 For recent representative examples see: (a) S. Keshipeddy, I. Martınez,
B. F. Castillo II, M. D. Morton and A. R. Howell, J. Org. Chem., 2012,
77, 7883–7890; (b) S. A. Snyder, A. P. Brucks, D. S. Treitler and I. Moga,
J. Am. Chem. Soc., 2012, 134, 17714–17721; (c) S. A. Snyder, D. S.
Treitler, A. P. Brucks and W. Sattler, J. Am. Chem. Soc., 2011, 133,
26 C. J. Elsevier, P. Vermeer, A. Gedanken and W. Runge, J. Org. Chem.,
1985, 50, 364–367.
´
´
15898–15901; (d) N. Ortega, V. S. Martın and T. Martın, J. Org. Chem.,
2010, 75, 6660–6672 and references cited therein.
27 Y. Tanigichi, J. Inanaga and M. Yamaguchi, Bull. Chem. Soc. Jpn.,
1981, 54, 3229–3230.
28 A. Hassner, R. H. Reuss and H. W. Pinnick, J. Org. Chem., 1975, 40,
3427–3429.
4 For
a review see: (a) A. Murai, in Comprehensive Natural
Products Chemistry, ed. D. H. R. Barton, O. Meth-Cohn and
K. Nakinishi, Elsevier, Oxford, 1999, vol. 1, pp. 303–324. For repre-
sentative examples see: (b) K. J. Bonney and D. C. Braddock, J. Org.
29 For a representative example see: J. S. Debenham, R. Rodebaugh
and B. Fraser-Reid, J. Org. Chem., 1997, 62, 4591–4600.
´
´
Chem., 2012, 77, 9574–9584; (c) A. Gutierrez-Cepeda, J. J. Fernandez,
M. Norte and M. L. Souto, Org. Lett., 2011, 13, 2690–2693; (d) D. C.
Braddock, D. S. Millan, Y. Perez-Fuertes, R. H. Pouwer, R. N. Sheppard,
S. Solanki and A. J. P. White, J. Org. Chem., 2009, 74, 1835–1841; (e) D. C.
Braddock, Org. Lett., 2006, 8, 6055–6058 and references cited therein.
´
30 W. Zhu, M. Jimenez, W.-H. Jung, D. P. Camarco, R. Balachandran,
A. Vogt, B. W. Day and D. P. Curran, J. Am. Chem. Soc., 2010, 132,
9175–9187.
´
´
´
´
31 G. Stork and K. Zhao, Tetrahedron Lett., 1989, 2173–2174.
32 For the unwanted formation of a vinyl 1,1-diiodide in a Stork–Wittig
reaction using [Ph3PCH2I]I see: P. Li, J. Li, F. Arikan, W. Ahlbrecht,
M. Dieckmann and D. Menche, J. Org. Chem., 2010, 75, 2429–2444.
5 A. Gutierrez-Cepeda, J. J. Fernandez, L. V. Gil, M. Lopez-Rodrıguez,
M. Norte and M. L. Souto, J. Nat. Prod., 2011, 74, 441–448.
6 (a) G. Guella, G. Chiasera, I. Mancini, A. Oztunç and F. Pietra,
Chem.–Eur. J., 1997, 3, 1223–1231; (b) M. L. Ciavatta, M. Gavagnin,
¨
´
R. Puliti, G. Cimino, E. Martınez, J. Ortea and C. A. Mattia, Tetra- 33 D. C. Braddock, J. Clarke and H. S. Rzepa, Figshare, 2013, DOI:
hedron, 1997, 53, 17343–17350.
10.6084/m9.figshare.785753 viz. ref. 20 and 21 for explanation.
c
11178 Chem. Commun., 2013, 49, 11176--11178
This journal is The Royal Society of Chemistry 2013