Pagination not final (cite DOI) / Pagination provisoire (citer le DOI)
Borba et al.
9
(5) Koldobskii, G. I.; Ostrovskii, V. A.; Poplavskii, V. S. Khim. Geterot. Soed. 1981,
10, 1299.
(6) Gaponik, P. N.; Voitekhovich, S. V.; Ivashkevich, O. A. Russ. Chem. Rev. 2006,
(7) Stierstorfer, J.; Tarantik, K. R.; Klapötke T. M. Chem. Eur. J. 2009, 15, 5775.
(9) May, B. C. H.; Abell, A. D. J. Chem. Soc., Perkin Trans. 1 2002, 172. doi:10.1039/
(10) Bugalho, S. C. S.; Lapinski, L.; Cristiano, M. L. S.; Frija, L. M. T.; Fausto, R. Vib.
(11) Hussey, B. J.; Johnstone, R. A. W.; Entwistle, J. D. Tetrahedron 1982, 38, 3775.
(12) Johnstone, R. A. W.; Wilby, A. H.; Entwistle, I. D. Chem. Rev. 1985, 85, 129.
bands, in line with the present interpretation). For these three
modes, the calculated frequency shifts are 20, 30, and 27 cm−1,
respectively, which are considerably larger than the mean abso-
lute shift for all of the remaining 52 modes lying in the probed
spectral region, which is smaller than 5 cm−1.
lowest energy. According to the performed B3LYP/6-311++G(d,p)
calculations on all of those molecules, the carbodiimide is 1.69,
54.13, and 55.02 kJ mol−1 more stable than its isomeric cyanamide,
nitrilimine, and diazirine, respectively. This is an additional argu-
ment in favor of the observation of the carbodiimide as the final
product of photolysis of 5PPT.
(13) Cristiano, M. L. S.; Johnstone, R. A. W.; Price, P. J. J. Chem. Soc. Perkin Trans. 1
(14) Araújo, N. C. P.; Brigas, A. F.; Cristiano, M. L. S.; Frija, L. M. T.;
Guimarães, E. M. O.; Loureiro, R. M. S. J. Mol. Catal. A 2004, 215, 113. doi:10.
(15) Frija, L. M. T.; Cristiano, M. L. S.; Guimarães, E. M. O.; Martins, N. C.;
Loureiro, R. M. S. S.; Bickley, J. F. J. Mol. Catal. A 2005, 242, 241. doi:10.1016/
(16) Gómez-Zavaglia, A.; Reva, I. D.; Frija, L. M. T.; Cristiano, M. L. S.; Fausto, R.
(17) Frija, L. M. T.; Ismael, A.; Cristiano, M. L. S. Molecules 2010, 15, 3757. doi:10.
(18) Frija, L. M. T.; Cristiano, M. L. S.; Gómez-Zavaglia, A.; Reva, I.; Fausto, R.
(19) Gómez-Zavaglia, A.; Reva, I. D.; Frija, L. M. T.; Cristiano, M. L. S.; Fausto, R.
(20) Gómez-Zavaglia, A.; Reva, I.; Frija, L. M. T.; Cristiano, M. L. S.; Fausto, R. J. Mol.
(21) Ismael, A.; Cristiano, M. L. S.; Fausto, R.; Gómez-Zavaglia, A. J. Phys. Chem. A
(22) Alves, J. A. C.; Barkley, J. V.; Brigas, A. F.; Johnstone, R. A. W. J. Chem. Soc.,
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.;
Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.;
Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.;
Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.;
Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.:
Wallingford, CT, 2009.
(25) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi:10.1103/
(26) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. doi:10.1139/p80-
(27) Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 281.
Conclusions
5-Phenoxy-1-phenyltetrazole was isolated in argon and N2 cryo-
genic matrices and its molecular structure, conformational
landscape, vibrational signature, and photochemistry were inves-
tigated by infrared spectroscopy and theoretical calculations
(DFT(B3LYP)/6-311++G(d,p)). Two different minima were located on
the potential energy surface of the molecule, both being eightfold
degenerate by symmetry and belonging to the C1 symmetry point
group. However, consideration of zero-point vibrational energy
allowed concluding that the higher energy minimum shall relax
barrierlessly to the lower energy form so that in the gas phase, the
compound exists in a single conformer. These theoretical predic-
tions were confirmed by the experimental results, with only one
conformer of 5PPT contributing to the infrared spectra of the
compound isolated in argon and N2 matrices. Structural details of
the different conformations and intramolecular interactions op-
erating in 5PPT were used to understand the conformational pref-
erences of the compound.
The infrared spectra of 5PPT in the studied matrices were fully
assigned and interpreted with help of normal coordinate analysis.
UV laser irradiation ( = 250 nm) of matrix-isolated 5PPT was
found to lead to photocleavage of the compound to the corre-
sponding carbodiimide accompanied by N2 release. Relevant
characteristics of the experimental spectrum of the observed pho-
toproduct, specifically the intensity smearing noticed in the N–O
and C–O spectral regions, were interpreted based on the effect of
the low-frequency, large-amplitude N–O mode in this compound.
Supplementary material
Supplementary material is available with the article through
1H NMR spectrum of 5PPT in CDCl3, Fig. S2 with the UV-visible
spectra of 5PPT in ethanol, Fig. S3 with calculated infrared spectra
for considered possible products resulting from photoelimination
of N2 from 5PPT, and Table S1 with the definition of the internal
coordinates used in the normal modes analysis calculations per-
formed on 5PPT.
(29) Peng, C.; Schlegel, H. B. Isr. J. Chem. 1994, 33, 449.
(30) Irikura, K. K. Program SYNSPEC; National Institute of Standards and
Technology: Gaithersburg, MD.
(32) Rostkowska, H.; Lapinski, L.; Nowak, M. J. Vib. Spectrosc. 2009, 49, 43. doi:10.
(33) Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc. 1979, 101, 2550.
(34) Batista de Carvalho, L. A. E.; Teixeira-Dias, J. J. C.; Fausto, R. Struct. Chem.
(36) Cradock, S.; Purves, C.; Rankin, D. W. H. J. Mol. Struct. 1990, 220, 193. doi:10.
Acknowledgements
The authors gratefully acknowledge Fundação para a Ciência e
a Tecnologia (FCT), Portugal (Projects PEst-OE/QUI/UI0313/2014
and PEst-C/MAR/LA0015/2014, cofunded by QREN-COMPETE-UE),
and CCMAR for financial support. A.B. and L.C. acknowledge
FCT and CCMAR, respectively, for the award of a postdoctoral
grant (reference SFRH/BPD/66154/2009) and a research fellowship.
(38) Bormans, B. J. M.; de With, G.; Mijlhoff, F. C. J. Mol. Struct. 1977, 42, 121.
References
(1) Bugalho, S. C. S.; Maçôas, E. M. S.; Cristiano, M. L. S.; Fausto, R. Phys. Chem.
(2) Mohite, P.-B.; Bhaskar, V. H. Int. J. PharmTech Res. 2011, 3, 1557.
(3) Sandmann, G.; Schneider, C.; Boger, P. Z. Naturforsch. C 1996, 51, 534.
(39) Gómez-Zavaglia, A.; Reva, I. D.; Frija, L. M. T.; Cristiano, M. L. S.; Fausto, R.
(40) Frija, L. M. T.; Reva, I. D.; Gómez-Zavaglia, A.; Cristiano, M. L. S.; Fausto, R.
Published by NRC Research Press