otherwise identical conditions. These experiments demonstrated
the heterogeneous nature of the present catalytic system. However,
as there is no channel or cavity in solid 1, the catalytic reaction
might take place on the solid surface. Most interestingly, the
surface promoted catalytic reaction can make the transformation
process highly efficient without any additional additives.
and F. Millange, Acc. Chem. Res., 2005, 38, 217; (f) C. N. R. Rao,
S. Natarajan and R. Vaidhyanathan, Angew. Chem., Int. Ed., 2004,
43, 1466; (g) I. Goldberg, Chem. Commun., 2005, 1243; (h) J. L. C.
Rowsell and O. M. Yaghi, Angew. Chem., Int. Ed., 2005, 44, 4670;
(i) R. J. Hill, D.-L. Long, N. R. Champness, P. Hubberstey and M.
Schro¨der, Acc. Chem. Res., 2005, 38, 335; (j) N. W. Ockwig, O. Delgado-
Friedrichs, M. O’Keeffe and O. M. Yaghi, Acc. Chem. Res., 2005, 38,
176; (k) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior and
M. J. Rosseinsky, Acc. Chem. Res., 2005, 38, 273; (l) Special issue on
“Reticular Chemistry: Design, Synthesis, Properties and Applications
of Metal–Organic Polyhedra and Frameworks”, beginning with: T. D.
Hamilton, G. S. Papaefstathiou and L. R. MacGillivray, J. Solid State
Chem., 2005, 178, 2409.
2 (a) S. L. James, Chem. Soc. Rev., 2003, 32, 276; (b) C. Janiak, Dalton
Trans., 2003, 2781; (c) M. Oh, G. B. Carpenter and D. A. Sweigart, Acc.
Chem. Res., 2004, 37, 1; (d) S. Kitagawa, R. Kitaura and S.-i. Noro,
Angew. Chem., Int. Ed., 2004, 43, 2334.
3 (a) J. S. Seo, D. Wand, H. Lee, S. I. Jun, J. Oh, Y. Jeon and K. Kim,
Nature, 2000, 404, 982; (b) L. Pan, H. Liu, X. Lei, X. Huang, D. H.
Olson, N. J. Turro and J. Li, Angew. Chem., Int. Ed., 2003, 42, 542;
(c) C.-D. Wu, A. Hu, L. Zhang and W. Lin, J. Am. Chem. Soc., 2005,
127, 8940; (d) S.-H. Cho, B. Ma, S. B. T. Nguyen, J. T. Hupp and T. E.
Albrecht-Schmitt, Chem. Commun., 2006, 2563; (e) C.-D. Wu and W.
Lin, Angew. Chem., Int. Ed., 2007, 46, 1075.
4 (a) K. Seki and W. Mori, J. Phys. Chem. B, 2002, 106, 1380;
(b) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M.
O’Keeffe and O. M. Yaghi, Science, 2003, 300, 1127; (c) G. Fe´rey, M.
Latroche, C. Serre, F. Millange, T. Loiseau and A. Percheron-Gue´gan,
Chem. Commun., 2003, 2976; (d) B. Kesanli, Y. Cui, M. Smith, E.
Bittner, B. Bockrath and W. Lin, Angew. Chem., Int. Ed., 2005, 44,
72.
5 (a) K. Uemura, S. Kitagawa, M. Kondo, K. Fukui, R. Kitaura, H.-C.
Chang and T. Mizutani, Chem.–Eur. J., 2002, 8, 3586; (b) M. P. Suh,
J. W. Ko and H. J. Choi, J. Am. Chem. Soc., 2002, 124, 10976; (c) D.
Bradshaw, T. J. Prior, E. J. Cussen, J. B. Claridge and M. J. Rosseinsky,
J. Am. Chem. Soc., 2004, 126, 6106.
6 (a) B. F. Hoskins and R. Robson, J. Am. Chem. Soc., 1990, 112,
1546; (b) K. S. Min and M. P. Suh, J. Am. Chem. Soc., 2000, 122,
6834.
7 (a) Z. Jiang, Z. Liang, X. Wu and Y. Lu, Chem. Commun., 2006, 2801;
(b) M. Klussmann, H. Iwamura, S. P. Mathew, D. H. Wells Jr., U.
Pandya, A. Armstrong and D. G. Blackmond, Nature, 2006, 441, 621;
(c) B. List, Synlett, 2001, 1675.
There have been many reports on attempts to optimize the
copper-promoted N-arylation of arylboronic acids with imidazole
to furnish N-arylimidazoles.15–17 Comparing with these reports,
the catalytic activity of 1 used at room temperature was better
than that of homogenous and heterogeneous catalysts used under
similar reaction conditions, and it even rivals them when used at
evaluated reaction temperatures. The striking catalytic activity of 1
prompted us to investigate further its catalytic properties. We tried
different solvents, such as DMF, THF, CH2Cl2 and H2O. However,
almost no product can be observed when using any of these, except
for trace amounts of the desired product obtained when using
DMF. Obviously, it can be concluded that the solvent effect was
one of the most important factors in the coupling of arylboronic
acids with imidazole in the case of compound.1 Together with
the crystal structure analysis result, we believe that the distinct
catalytic activity of 1 can be attributed to the coordinatively vacant
axial positions of copper atoms, which generated dramatically
different results compared to the aforementioned systems.
Collman et al. have proposed that the coupling reaction
mechanism to involve binuclear Cu(II) catalyzed C–N bond
formation.15 However, our structurally characterized catalyst
suggests a mononuclear process because all of the copper(II) atoms
are fixed by the coordinating ligands during the catalytic process.
Conclusions
In conclusion, we have successfully synthesized a new bridged
copper(II) coordination polymer with valine derived ligands, which
acted as an efficient catalyst for the cross-coupling of arylboronic
acids with imidazole in methanol. The attractive features of the
catalytic system are: (1) no need for additional additives, (2) can
be used at room temperature, (3) affords good to excellent yields,
(4) reusability of the catalyst. The crystal structure analysis,
together with the catalytic results, suggests that the coordinatively
vacant axial positions in the copper(II) atoms plays a very impor-
tant role in the efficient catalytic activity of 1. Most significantly
of all, the structurally characterized catalyst is very important for
further study of the catalytic mechanism.
8 (a) B. List, Acc. Chem. Res., 2004, 37, 548; (b) W. Notz, F. Tanaka and
C. F. Barbas, III, Acc. Chem. Res., 2004, 37, 580.
9 Some recent examples: (a) E. V. Anokhina and A. J. Jacobson, J. Am.
Chem. Soc., 2004, 126, 3044; (b) J. J. Vittal, X. Wang and J. D. Ranford,
Inorg. Chem., 2003, 42, 3390; (c) N. Guillou, C. Livage, M. Drillon and
G. Fe´rey, Angew. Chem., Int. Ed., 2003, 42, 5314; (d) R. Matsuda, R.
Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H.
Sakamoto, T. Chiba, M. Takata, Y. Kawazoe and Y. Mita, Nature, 2005,
436, 238; (e) R. Vaidhyanathan, D. Bradshaw, J.-N. Rebilly, J. P. Barrio,
J. A. Gould, N. G. Berry and M. J. Rosseinsky, Angew. Chem., Int. Ed.,
2006, 45, 6495; (f) Y. Zhang, M. K. Saha and I. Bernal, CrystEngComm,
2003, 5, 34; (g) B. Screenivasulu and J. J. Vittal, Angew. Chem., Int. Ed.,
2004, 43, 5769; (h) M. A. Alam, M. Nethaji and M. Ray, Angew. Chem.,
Int. Ed., 2003, 42, 1940.
10 Z.-Q. Yan, Y.-Y. Zhou and L. Nie, Chin. J. Appl. Chem., 2005, 22,
1258.
Acknowledgements
11 T. Higashi, ABSCOR, Rigaku Corporation, Tokyo, Japan,
1995.
We are grateful for the financial support of the NSF of China
(grant no. 20673096), Zhejiang Provincial Natural Science Foun-
dation of China (grant no. R406209) and the State Education
Ministry.
12 G. M. Sheldrick, Program for Structure Refinement, University of
Go¨ttingen, Germany, 1997.
13 (a) S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42,
5400; (b) M. Negwer, Organic-chemical drugs and their synonyms: (an
international survey), Akademie Verlag GmbH, Berlin, 7th edn, 1994;
(c) P. Y. S. Lam, G. Vincent, C. G. Clark, S. Deudon and P. K. Jadhav,
Tetrahedron Lett., 2001, 42, 3415.
14 (a) P. Y. S. Lam, S. Deudon, K. M. Averill, R. Li, M. Y. He, P. Deshong
and C. G. Clark, J. Am. Chem. Soc., 2000, 122, 7600; (b) G. I. Elliott
and J. P. Konopelski, Org. Lett., 2000, 2, 3055; (c) P. Y. S. Lam, C. G.
Clark, S. Saubern, J. Adams, K. M. Averill, D. M. T. Chan and A.
Combs, Synlett, 2000, 674; (d) K. Mori, K. Yamaguchi, T. Mizugaki,
K. Ebitani and K. Kaneda, New J. Chem., 2002, 26, 1536; (e) K. Mori,
K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani and K. Kaneda, J. Am.
References
1 (a) S. Lee, A. B. Mallik, Z. Xu, E. B. Lobkovsky and L. Tran, Acc.
Chem. Res., 2005, 38, 251; (b) K. S. Suslick, P. Bhyrappa, J.-H. Chou,
M. E. Kosal, S. Nakagaki, D. W. Smithenry and S. R. Wilson, Acc.
Chem. Res., 2005, 38, 283; (c) P. Feng, X. Bu and N. Zheng, Acc.
Chem. Res., 2005, 38, 293; (d) B. Kesanli and W. Lin, Coord. Chem.
Rev., 2003, 246, 305; (e) G. Fe´rey, C. Mellot-Draznieks, C. Serre
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 6790–6794 | 6793
©