Inorganic Chemistry
Article
Complexes Derived from the Oxygenation of Thiolate Sulfur in [1,5-
Bis(2-Mercapto-2-Methylpropyl)-1,5-diazacyclooctanato(2-)]nickel-
and Correction of the Time-Dependent Local Density Approximation
Ionization Threshold. J. Chem. Phys. 1998, 108 (11), 4439−4449.
(35) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals
for Main Group Thermochemistry, Thermochemical Kinetics, Non-
covalent Interactions, Excited States, and Transition Elements: Two
New Functionals and Systematic Testing of Four M06-Class
Functionals and 12 Other Function. Theor. Chem. Acc. 2008, 120
(
II). J. Am. Chem. Soc. 1995, 117 (3), 963−973.
(
17) Zhang, D.; Bin, Y.; Tallorin, L.; Tse, F.; Hernandez, B.; Mathias,
E. V.; Stewart, T.; Bau, R.; Selke, M. Sequential Photooxidation of a
Pt(II) (Diimine)cysteamine Complex: Intermolecular Oxygen Atom
Transfer versus Sulfinate Formation. Inorg. Chem. 2013, 52 (4), 1676−
(
1−3), 215−241.
1
(
678.
18) Connick, W. B.; Gray, H. B. Photooxidation of Platinum(II)
Diimine Dithiolates. J. Am. Chem. Soc. 1997, 119 (48), 11620−11627.
19) Jensen, F.; Greer, A.; Clennan, E. L. Reaction of Organic
Sulfides with Singlet Oxygen. A Revised Mechanism. J. Am. Chem. Soc.
998, 120 (18), 4439−4449.
20) Clennan, E. L.; Wang, D.; Zhang, H.; Clifton, C. H.
(
36) De Angelis, F.; Fantacci, S.; Selloni, A. Time-Dependent Density
Functional Theory Study of the Absorption Spectrum of [Ru(4,4′-
COOH-2,2′-bpy)2(NCS)2] in Water Solution: Influence of the pH.
Chem. Phys. Lett. 2004, 389 (1−3), 204−208.
(
(37) Fantacci, S.; De Angelis, F.; Selloni, A. Absorption Spectrum
1
(
and Solvatochromism of the [Ru(4,4′-COOH-2,2′-Bpy) 2 (NCS) 2 ]
Molecular Dye by Time Dependent Density Functional Theory. J. Am.
Chem. Soc. 2003, 125 (14), 4381−4387.
Photooxidations of Sulfenic Acid Derivatives 2. A Remarkable Solvent
Effect on the Reactions of Singlet Oxygen with Disulfides. Tetrahedron
Lett. 1994, 35 (27), 4723−4726.
(38) Bourouina, A.; Rekhis, M.; Trari, M. DFT/TD-DFT Study of
Ruthenium Bipyridyl-Based Dyes with a Chalcogen Donor (X = S, Se,
Te), for Application as Dye-Sensitized Solar Cells. Polyhedron 2017,
(
21) Husson, J.; Dehaudt, J.; Guyard, L. Preparation of Carboxylate
Derivatives of Terpyridine via the Furan Pathway. Nat. Protoc. 2013, 9
1), 21−26.
́
̈
22) Nazeeruddin, M. K.; Pechy, P.; Gratzel, M. Efficient
1
(
27, 217−224.
(
39) O’boyle, N. M.; Tenderholt, A. L.; Langner, K. M. Cclib: A
(
Library for Package-Independent Computational Chemistry Algo-
Panchromatic Sensitization of Nanocrystalline TiO2 Films by a
Black Dye Based on a Trithiocyanato−ruthenium Complex. Chem.
Commun. 1997, 1 (18), 1705−1706.
rithms. J. Comput. Chem. 2008, 29 (5), 839−845.
(40) Welby, C. E.; Armitage, G. K.; Bartley, H.; Sinopoli, A.; Uppal,
B. S.; Elliott, P. I. P. Photochemical Ligand Ejection from Non-
Sterically Promoted Ru(ii)bis(diimine) 4,4′-bi-1,2,3-Triazolyl Com-
plexes. Photochem. Photobiol. Sci. 2014, 13 (5), 735−738.
(
23) Brouwer, A. M. Standards for Photoluminescence Quantum
Yield Measurements in Solution (IUPAC Technical Report). Pure
Appl. Chem. 2011, 83 (12), 2213.
(41) Bond, A. M. Voltammetric Determination of the Reversible
(
24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Redox Potential for the Oxidation of the Highly Surface Active
Polypyridyl Ruthenium Photovoltaic Sensitizer Cis-Ru(II)](dcbpy)-
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Had, M.
Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
[
sub 2](NCS)[sub 2]. J. Electrochem. Soc. 1999, 146 (2), 648.
42) Foote, C. S.; Peters, J. W. Chemistry of Singlet Oxygen. XIV.
Reactive Intermediate in Sulfide Photooxidation. J. Am. Chem. Soc.
971, 93 (15), 3795−3796.
43) Farmer, P. J.; Solouki, T.; Mills, D. K.; Soma, T.; Russell, D. H.;
(
(
25) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon,
1
M. S.; DeFrees, D. J.; Pople, J. A. Self Consistent Molecular Orbital
Methods. XXIII. A Polarization Type Basis Set for Second Row
Elements. J. Chem. Phys. 1982, 77 (7), 3654−3665.
(
Reibenspies, J. H.; Darensbourg, M. Y. Isotopic Labeling Investigation
of the Oxygenation of Nickel-Bound Thiolates by Molecular Oxygen.
J. Am. Chem. Soc. 1992, 114 (12), 4601−4605.
(44) Selke, M. Reactions of Metal Complexes with Singlet Oxygen.
In PATAI’S Chemistry of Functional Groups; John Wiley & Sons, Ltd.:
Chichester, U.K., 2014; pp 1−50.
(45) Bregnhøj, M.; Westberg, M.; Jensen, F.; Ogilby, P. R. Solvent-
Dependent Singlet Oxygen Lifetimes: Temperature Effects Implicate
Tunneling and Charge-Transfer Interactions. Phys. Chem. Chem. Phys.
2016, 18 (33), 22946−22961.
(
26) Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self-Consistent
Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for
Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971,
5
(
4 (2), 724−728.
27) Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L. 6-31G
*
Basis Set for Atoms K through Zn. J. Chem. Phys. 1998, 109 (4),
1
223−1229.
(
28) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-Consistent
Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type
Basis Sets for Use in Molecular Orbital Studies of Organic Molecules.
J. Chem. Phys. 1972, 56 (5), 2257−2261.
(
29) Hariharan, P. C.; Pople, J. A. The Influence of Polarization
Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim.
Acta 1973, 28 (3), 213−222.
(
30) Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.
Energy-Adjustedab Initio Pseudopotentials for the Second and Third
Row Transition Elements. Theor. Chim. Acta 1990, 77 (2), 123−141.
(
31) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal
Solvation Model Based on Solute Electron Density and on a
Continuum Model of the Solvent Defined by the Bulk Dielectric
Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113
(
18), 6378−6396.
(
32) Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid
Density Functionals with Damped Atom−atom Dispersion Correc-
tions. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615.
(
33) Bauernschmitt, R.; Ahlrichs, R. Treatment of Electronic
Excitations within the Adiabatic Approximation of Time Dependent
Density Functional Theory. Chem. Phys. Lett. 1996, 256 (4−5), 454−
4
64.
(
34) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R.
Molecular Excitation Energies to High-Lying Bound States from Time-
Dependent Density-Functional Response Theory: Characterization
H
Inorg. Chem. XXXX, XXX, XXX−XXX