BULLETIN OF THE
Article
Antioxidant Mechanism of Nonphenolic Hydrazone Schiff Base Analogs
KOREAN CHEMICAL SOCIETY
Crystallographic Data Center (CCDC), 12 Union Road,
Cambridge, CB2 1EZ, UK; fax: +44(0) 1222–336033; e-mail:
Requestastructure/Pages/DataRequest.aspx
400
3a
R2 = 0.90
n = 5
300
200
100
0
3c
References
3b
3e
1. O. O. Ajani, C. A. Obafemi, O. C. Nwinyi, D. A. Akinpelu,
Bioorg. Med. Chem. 2010, 18, 214.
2. L. Liu, M. S. Alam, Lee, D-U. Bull. Korean Chem. Soc. 2012,
33, 3361.
3. L. Savini, L. Chiasserini, V. Travagli, C. Pellerano, E. Novellino,
S. Consentino, M. B. Pisano, Eur. J. Med. Chem. 2004, 39, 113.
4. Y. Janin, Bioorg. Med. Chem. 2007, 15, 2479.
5. J. R. Dimmock, S. C. Vasishtha, J. P. Stables, Eur. J. Med. Chem.
2000, 35, 241.
3d
4
3
5
6
7
Δ
E(HOMO-LUMO), eV
Figure 9. Correlation between antioxidant activity (IC50, mM) and
HOMO/LUMO energy differences of compounds 3a–e.
6. R. Kalsi, M. Shrimali, T. N. Bhalla, J. P. Barthwal, Indian J.
Pharm. Sci. 2006, 41, 353.
7. C. Loncle, J. M. Brunel, N. Vidal, M. Dherbomez, Y. Letour-
neux, Eur. J. Med. Chem. 2004, 39, 1067.
(n = 5), i.e., antioxidant activity increased on decreasing
8. M. T. Abdel-Aal, W. A. El-sayed, E. H. El-ashry, Arch. Pharm.
Chem. Life Sci. 2006, 339, 656.
HOMO and LUMO energy differences (Figure 9).
9. S.-J. Peng, J. Chem. Crystallogr. 2011, 41, 280.
10. A. El-Faham, M. Farooq, S. N. Khattab, A. M. Elkayal, M. F.
Ibrahim, N. Abutaha, M. A. Wadaan, E. A. Hamed, Chem.
Pharm. Bull. 2014, 62, 591.
11. C. D. Fan, H. Su, J. Zhao, B. X. Zhao, S. L. Zhang, J. Y. Miao,
Eur. J. Med. Chem. 2010, 45, 1438.
12. H. H. Monfared, M. Nazari, P. Mayer, M.-A. Kamyabi, A.
Erxleben, Z. Asgari, Z. Naturforsch. 2009, 64b, 409.
13. C. Juliano, A. Mattana, C. Solinas, Transit. Met. Chem. 2010,
35, 253.
14. O. Hashizume, A. Shimizu, M. Yokota, A. Sugiyama, K.
Nakada, H. Miyoshi, M. Itami, M. Ohira, H. Nagase, K. Take-
naga, Proc. Natl. Acad. Sci. U.S A. 2012, 109, 10528.
15. S. Bhattacharjee, L. J. Deterding, S. Chatterjee, J. Jiang, M.
Ehrenshaft, O. Lardinois, D. C. Ramirez, K. B. Tomer, R. P.
Mason, Free Radic. Biol. Med. 2011, 50, 1536.
16. C. Aliaga, E. A. Lissi, Int. J. Chem. Kinet. 1998, 30, 565.
17. E. Anouar, C. Calliste, P. Kosinova, F. di Meo, J. Duroux, Y.
Champavier, K. Marakchi, P. Trouillas, J. Phys. Chem. A
2009, 113, 13881.
18. C. Iuga, J. R. Alvarez-Idaboy, A. Vivier-Bunge, J. Phys. Chem. B
2011, 115, 12234.
19. T. X. Nguyen, G. Grampp, A. V. Yurkovskaya, N. Lukzen,
J. Phys. Chem. A 2013, 33, 7655.
20. A. López-Munguía, Y. Hernandez-Romero, J. Pedraza-Cha-
verri, A. Miranda-Molina, I. Regla, A. Martinez, E. Castillo,
PLoS One 2011, 6, e201215.
21. Bruker, SMART (Version 5.625) for Windows NT, Bruker AXS
Inc., Madison, WI, 2000.
22. G. M. Sheldrick, SHELXTL, Version 6.12 for Windows NT, Bru-
ker AXS Inc., Madison, WI, 2008.
23. Bruker, SAINT-Plus (Version 5.625) for Windows NT, Bruker
AXS Inc., Madison, WI, 2000.
Conclusion
Nonphenolic (E)-N0-benzylidenebenzohydrazide analogs
were synthesized and their antioxidant activity was evaluated
using DPPH. A single crystal of (E)-N0-(4-chlorobenzylidene)
benzohydrazide (3c) was obtained using the solvent loss tech-
nique and X-ray diffraction analysis revealed that it had tri-
clinic symmetry (P-1) and a trans configuration around the
azomethine ( C2 N2 ) double bond. Weak nonclassical
intermolecular N Hꢂ ꢂ ꢂO hydrogen bonds were observed on
crystal layers and the crystal unit cell showed adjacent juxapo-
sitioned crystal layers. Hirshfeld analyses reveal the close
Oꢂ ꢂ ꢂH, Nꢂ ꢂ ꢂH, Clꢂ ꢂ ꢂH, and Cꢂ ꢂ ꢂH contacts and π–π stacking
in the crystal structure. All compounds showed significant
DPPH radical scavenging activity, and of these, compound
3d showed greatest activity with an IC50 value of 11 μM,
although this was lower than that of the standard antioxidant,
ascorbic acid (IC50, 0.87 μM). DFT studies revealed that pro-
tons attached to N, O, and C atoms with high negative charge
might produce proton free radicals to neutralize DPPH. The
study also indicates that low energy differences between
HOMO and LUMO help to stabilize benzylidenebenzohydra-
zide radicals and increase activity. A good correlation was
observed between HOMO–LUMO energy differences and
the antioxidant activities of compounds 3a–e.
Acknowledgments. Dr. Ha-Jin Lee at Korea Basic Science
Institute (Western Seoul Center) is acknowledged for the
X-ray analyses. Publication cost of this paper was supported
by the Korean Chemical Society.
24. M. S. Blois, Nature 1958, 181, 1199.
25. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. Am. Chem. Soc.
1985, 107, 3902.
26. A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
27. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
Supplementary Information. Crystallographic data for
compound 3c have been deposited at the Cambridge Crystal-
lographic Data Center (Deposition number CCDC-1017656).
Data can be obtained, free of charge, from: the Cambridge
Bull. Korean Chem. Soc. 2015, Vol. 36, 682–691
© 2015 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
690