G. Bez, D. Gogoi / Tetrahedron Letters 47 (2006) 5155–5157
5157
dithiolane in preference to the ketone functionality
Scheme 2).
8. Corey, E. J.; Shimoji, K. Tetrahedron Lett. 1983, 24, 169–
72.
1
(
9
. Srivastava, N.; Dasgupta, S.; Banik, B. K. Tetrahedron
Lett. 2003, 44, 1191–1193.
In conclusion, we have reported an efficient and chemo-
selective and yet simple, straightforward, environmen-
tally benign protocol for the synthesis of 1,3-
dithiolanes from carbonyl compounds using SnCl2Æ
1
0. Kamitori, Y.; Hojo, M.; Masuda, R.; Kimura, T.;
Yoshida, T. J. Org. Chem. 1986, 51, 1427–1431.
1. Perni, R. B. Synth. Commun. 1989, 19, 2383–2387.
2. (a) Ballini, R.; Barboni, L.; Maggi, R.; Santori, G. Synth.
Commun. 1999, 29, 767–772; (b) Kumar, P.; Reddy, R. S.;
Shing, A. P.; Pandey, B. Tetrahedron Lett. 1992, 33, 825–
826.
1
1
2
H O. No aqueous work-up, no solvent, dehydrating
2
agent, anhydrous atmosphere or tedious removal of
water during the reaction were required. The compati-
bility of the catalyst with acid sensitive functional
groups such as nitro, methoxy, carbomethoxy, 1,3-
dioxolane, etc. were the main advantages of the method.
13. Olah, G. A.; Narang, S.; Meider, D.; Salem, G. F.
Synthesis 1981, 282–283.
1
4. Chaudhury, B. M.; Sudha, Y. Synth. Commun. 1996, 26,
67–771.
7
1
1
5. Patney, H. K. Tetrahedron Lett. 1994, 35, 5717–5718.
6. Patney, H. K.; Morgan, S. Tetrahedron Lett. 1996, 37,
Acknowledgements
4
621–4622.
7. Kasturi, S. P.; Bendgen, B. P. Synth. Commun. 1996, 26,
579–1583.
8. Anand, R. V.; Sarvanan, P.; Singh, V. K. Synlett 1999,
15–416.
19. Firouzabadi, H.; Iranpoor, N.; Amani, K. Synthesis 2002,
9–62.
1
1
The authors are grateful to the Vice-Chancellor, Dibru-
garh University for providing the facilities for our work.
Help from Dr. Nabin C. Barua, Sc F and Deputy Direc-
tor, RRL, Jorhat, India is gratefully acknowledged.
1
4
5
2
0. (a) Tanaka, K.; Toda, F. Chem. Rev. 2000, 100, 1025–
1074; (b) Yadav, Y. S.; Reddy, B. V. S.; Reddy, P. M. K.;
Gupta, M. K. Tetrahedron Lett. 2005, 46, 8493–
8497.
References and notes
1
. (a) Green, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 3rd ed.; Wiley: New York, 1999;
Chapter 4; (b) Loewenthal, H. J. E. In Protective Groups
in Organic Chemistry; McOmie, J. F. W., Ed.; Plenum:
London, 1973; Chapter 9.
21. (a) Caddick, S. Tetrahedron 1995, 51, 10403–10432; (b)
Loupy, A.; Patty, A.; Hamelin, J.; Texier-Boullet, F.;
Jacquault, P.; Methe, D. Synthesis 1998, 1213–1234.
22. Typical procedure: A mixture of p-methylbenzaldehyde
(0.240 g, 2 mmol), 1,2-ethanedithiol (0.188 g, 2 mmol) and
SnCl Æ2H O (0.023 g, 0.1 mmol) was taken in an Erlen-
2
. Kocienski, P. J. Protecting Groups, 3rd ed.; Thieme:
Stuttgart, 2003.
2
2
3
. (a) Utimoto, K.; Nakamura, A.; Matsubara, S. J. Am.
Chem. Soc. 1990, 112, 8189–8190; (b) Eliel, E. L.; Morris-
Natschke, S. J. Am. Chem. Soc. 1984, 106, 2937–2942; (c)
Lynch, J. E.; Eliel, E. L. J. Am. Chem. Soc. 1984, 106,
meyer flask and irradiated with microwaves. After a few
seconds, the SnCl Æ2H O dissolved in the reaction mixture.
2
2
By monitoring with TLC, the conversion was found to be
complete in 3 min. After cooling, the homogeneous
mixture was passed through a small silica gel (60–120
mesh) pad and the product was eluted using 1% ethyl
acetate in hexane as eluent. Yield = 89% (0.349 g,
1.78 mmol). IR (KBr): 740, 820, 840, 1025, 1080, 1290,
2
943–2948.
4
5
6
7
. Hatch, R. P.; Shringerpure, J.; Weinreb, S. M. J. Org.
Chem. 1978, 43, 4172–4177.
. Muthuswamy, S.; Babu, S. A.; Gururathan, C. Tetra-
hedron Lett. 2001, 42, 359–362.
. Asoka, C. V.; Mathew, A. Tetrahedron Lett. 1994, 35,
585–2586.
. Kamal, A.; Chouhan, G. Tetrahedron Lett. 2002, 43,
347–1350.
À1
1
1400, 1480, 2870 cm ; H NMR (300 MHz, CDCl ): d
3
2.35 (s, 3H), 3.25–3.45 (m, 4H), 5.55 (s, 1H), 7.09 (d, 2H),
1
3
2
7.40 (d, 2H) ppm; C NMR (75 MHz, CDCl ): 21.01,
3
40.08, 56.05, 127.75, 129.10, 137.07, 137.75 ppm; MS: m/z
196, 168, 153, 135, 91, 45.
1