4
6
6
6
6
7
71
72
7
7
7
7
77
78
6
7
8
9
0
Alexander, M. L. Good, Inorg. Chem. 1976, 11, 2615. b) C. Vu,
D. Walker, J. Wells, S. Fox, J. Heterocycl. Chem. 2002, 39, 829.
c) C. J. Chandler, L. W. Deady, J. A. Reiss, V. Tzimos, J.
Heterocycl. Chem. 1982, 19, 1017. d) C. He, S. J. Lippard,
Tetrahedron 2000, 56, 8245. e) H. Asahara, K. Muto, N.
Nishiwaki, Tetrahedron 2014, 70, 6522.
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
Si–Ru–Ru–Si linkage, whereas the Ru(I)–Ru(I) complex 3
takes a roughly linear Si–Ru–Ru–Si linkage with a long Ru–
Ru bond distance. Studies on the synthesis of other
t-Bu
dinuclear transition-metal complexes having
NBSi and
on the reactivity of complexes 2 and 3 toward organic
compounds are in progress.
9
During the reaction of 1 with Ru (CO)12, an insoluble black solid
3
3
4
5
6
of unidentified byproducts was also formed.
10
Crystallographic data reported in this manuscript have been
deposited with Cambridge Crystallographic Data Centre as
supplementary publication nos. CCDC-1812369 (for 2) and
CCDC-1812370 (for 3). Copies of the data can be obtained free
of charge via CCDC Website.
K. Geetharani, S. K. Bose, S. Sahoo, B. Varghese, S. M. Mobin,
S. Ghosh, Inorg. Chem. 2011, 50, 5824.
J. C. Green, M. L. H. Green, G. Parkin, Chem. Commun. 2012,
48, 11481.
This work was supported by JSPS KAKENHI Grant
Numbers JP25410058, JP15H03782, and JP16K05714 from
the Japan Society for the Promotion of Science (JSPS). We
also acknowledge the Research and Analytical Center for
Giant Molecules, Tohoku University, for mass
spectroscopic measurements and elemental analysis.
1
1
1
1
1
1
1
1
7
8
8
8
9
0
1
2
11
12
Supporting
Information
is
available
on
83 13 a) R. N. Perutz, B. Procacci, Chem. Rev. 2016, 116, 8506. b) H.
84
http://dx.doi.org/10.1246/cl.******.
Suzuki, R. Shimogawa, Y. Muroi, T. Takao, M. Oshima, G.
Konishi, Angew. Chem., Int. Ed. 2013, 52, 1773.
8
8
8
8
8
9
9
9
5
6
7
8
9
0
1
2
14
During monitoring of the photoreaction of 2 under CO, a singlet
1
signal of dihydrogen was observed at 4.46 ppm by H NMR
spectroscopy.
Elucidation of the formation mechanism of 3 by the
photoreaction of 2 is currently under investigation.
P. Braunstein, J. R. Galsworthy, W. Massa, J. Chem. Soc.,
Dalton Trans. 1997, 4677.
1
8
References and Notes
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
1
a) I. G. Powers, C. Uyeda, ACS Catal. 2017, 7, 936. b) H. Suzuki,
Eur. J. Inorg. Chem. 2002, 1009.
15
16
2
a) J. A. Cabeza, L. A. Oro, A. Tiripicchio, M. Tiripicchio-
Camellini, J. Chem. Soc., Dalton Trans. 1988, 1437. b) A.
Tiripicchio, M. T. Camellini, R. Usón, L. A. Oro, M. A. Ciriano,
F. Vigiuri, J. Chem. Soc., Dalton Trans. 1984, 125. c) T. Suzuki,
Inorg. Chim. Acta 2006, 359, 2431.
3
4
a) S. K. Patra, N. Sadhukhan, J. K. Bera, Inorg. Chem. 2006, 45,
4007. b) S. K. Patra, J. K. Bera, Organometallics 2006, 25, 6054.
c) R. K. Das, B. Saha, S. M. W. Rahaman, J. K. Bera, Chem. Eur.
J. 2010, 16, 14459. d) B. Saha, T. Ghatak, A. Sinha, S. M. W.
Rahaman, J. K. Bera, Organometallics 2011, 30, 2051. e) M. S.
Ziegler, K. V. Lakshmi, T. D. Tilley, J. Am. Chem. Soc. 2017,
139, 5378.
For selected examples of 2,7-disubstituted 1,8-naphthyridine
ligands, see: a) C. Uyeda, T. J. Steiman, S. Pal, Synlett 2016, 27,
814 and references therein. b) M. J. Behlen, Y.-Y. Zhou, T. J.
Steiman, S. Pal, D. R. Hartline, M. Zeller, C. Uyeda, Dalton
Trans. 2017, 46, 5493. c) Y.-Y. Zhou, C. Uyeda, Angew. Chem.,
Int. Ed. 2016, 55, 3171. d) S. Pal, Y.-Y. Zhou, C. Uyeda, J. Am.
Chem. Soc. 2017, 139, 11686. e) D. R. Hartline, M. Zeller, C.
Uyeda, J. Am. Chem. Soc. 2017, 139, 13672. f) I. Dutta, A.
Sarbajna, P. Pandey, S. M. W. Rahaman, K. Singh, J. K. Bera,
Organometallics 2016, 35, 1505. g) B. Saha, S. M. W. Rahaman,
P. Daw, G. Sengupta, J. K. Bera, Chem. Eur. J. 2014, 20, 6542.
h) C.-H. Lee, C.-L. Wu, S.-A. Hua, Y.-H. Liu, S.-M. Peng, S.-T.
Liu, Eur. J. Inorg. Chem, 2015, 1417. i) J.-P. Collin, A. Jouaiti,
J.-P. Sauvage, W. C. Kaska, M. A. McLoughlin, N. L. Keder, W.
T. A. Harrison, G. D. Stucky, Inorg. Chem, 1990, 29, 2238. j) E.
Binamira-Soriaga, N. L. Keder, W. C. Kaska, Inorg. Chem, 1990,
29, 3167. k) C. He, S. J. Lippard, Inorg. Chem, 2000, 39, 5225. l)
B.-C. Tsai, Y.-H. Liu, S.-M. Peng, S.-T. Liu, Eur. J. Inorg. Chem,
2016, 2783.
5
a) T. Komuro, H. Tobita, Chem. Commun. 2010, 46, 1136. b) T.
Komuro, T. Kitano, N. Yamahira, K. Ohta, S. Okawara, N.
Mager, M. Okazaki, H. Tobita, Organometallics 2016, 35, 1209
and references therein. c) T. Komuro, T. Arai, K. Kikuchi, H.
Tobita, Organometallics 2015, 34, 1211.
6
7
M. C. MacInnis, R. McDonald, M. J. Ferguson, S. Tobisch, L.
Turculet, J. Am. Chem. Soc. 2011, 133, 13622.
a) J. A. Turner, J. Org. Chem. 1983, 48, 3401. b) T. Ghatak, M.
Sarkar, S. Dinda, I. Dutta, S. M. W. Rahaman, J. K. Bera, J. Am.
Chem. Soc. 2015, 137, 6168. c) G. R. Newkome, K. J. Theriot, V.
K. Majestic, P. A. Spruell, G. R. Baker, J. Org. Chem. 1990, 55,
2838.
8
For conventional methods for the synthesis of 2,7-dimethyl-1,8-
naphthyridine (E), see: a) M. A. Cavanaugh, V. M. Cappo, C. J.