10.1002/chem.201903724
Chemistry - A European Journal
COMMUNICATION
Zeller, M.; Uyeda, C. J. Am. Chem. Soc. 2017, 139, 13672−13675; c) Pal,
S.; Zhou, Y. -Y.; Uyeda, C. J. Am. Chem. Soc. 2017, 139, 11686−11689;
d) Pal, S.; Uyeda, C. J. Am. Chem. Soc. 2015, 137, 8042−8045.
[11] Zhou, Y.-Y.; Uyeda, C. Science 2019, 363, 857-862.
[12] Reviews on redox-active ligands: a) V. K. K. Praneeth, M. R. Ringenberg
and T. R. Ward, Angew. Chem. Int. Ed. 2012, 51, 10228–10234; Luca,
O. R.; Crabtree, R. H. Chem. Soc. Rev. 2013, 42, 1440–1459; Broere, D.
L. J.; Plessius, R.; van der Vlugt, J. I. Chem. Soc. Rev. 2015, 44, 6886–
6915.
Acknowledgements
This work was supported by The Netherlands Organization for
Scientific Research (START-UP grant 740.018.019 to D.L.J.B.)
and the European Union's Horizon 2020 research and innovation
program (agreement 840836, MSCA-IF to D.L.J.B., BiMetaCat).
Access to supercomputer facilities was sponsored by NWO
Exacte en Natuurwetenschappen (Physical Sciences). The X-ray
diffractometer was financed by the NWO. Gerard van Koten, Bert
Klein-Gebbink and Marc-Etienne Moret are acknowledged for
valuable discussions and suggestions.
[13] Based on the work described herein, we anticipate that a recently
reported ligand by the Tilley group could also display chemical
noninnocence: Nicolay, A.; Tilley, T. D. Chem. Eur. J. 2018, 24, 10329–
0333.
[14] See the supporting information for additional details.
[15] Simler, T.; Karmazin, L.; Bailly, C.; Braunstein, P.; Danopoulos, A. A.
Organometallics 2016, 35, 903–912.
Keywords: bimetallics • copper hydride • metal-ligand
cooperativity • ligand design • metal-metal interactions
[16] a) de Boer, S. Y.; Gloaguen, Y.; Lutz, M.; van der Vlugt, J. I. Inorganica
Chim. Acta 2012, 380, 336–342; b) Rong, M. K.; Bauer, R. C.; Pidko, E.
A.; Lutz, M.; Gloaguen, Y.; van der Vlugt, J. I. Chem. Eur. J. 2011, 17,
3850–3854.
[1]
a) Sippel, D.; Rohde, M.; Netzer, J.; Trncik, C.; Gies, J.; Grunau, K.;
Djurdjevic, I.; Decamps, L.; Andrade, S. L. A.; Einsle, O. Science 2018,
359, 1484–1489; Can, M.; b) Armstrong, F.A.; Ragsdale, S.W. Chem.
Rev. 2014, 114, 4149−4174; c) Lubitz, W.; Ogata, H.; Rüdiger,
O.; Reijerse, E.; Chem. Rev. 2014, 114, 4081–4148; d) Wodrich, M. D.;
Hu, X. Nat. Rev. Chem. 2017, 2, 0099.
[17] Marker, A.; Gunter, M. J. J. Magn. Reson. 1982, 47, 118–132.
[18] Reactions with one equiv KOt-Bu yielded an inseparable mixture of 1, 2
and presumably PNNP*Cu2Cl.
[19] a) Nerush, A.; Vogt, M.; Gellrich, U.; Leitus, G.; Ben-David, Y.; Milstein,
D. J. Am. Chem. Soc. 2016, 138, 6985–6997; b) Vogt, M.; Nerush, A.;
Iron, M. A.; Leitus, G.; Diskin-Posner, Y.; Shimon, L. J. W.; Ben-David,
Y.; Milstein, D. J. Am. Chem. Soc. 2013, 135, 17004–17018; c) van der
Vlugt, J. I.; Pidko, E. A.; Vogt, D.; Lutz, M.; Spek, A. L. Inorg. Chem. 2009,
48, 7513; d) van der Vlugt, J. I.; Lutz, M.; Pidko, E. A.; Vogt, D.; Spek, A.
L. Dalton Trans. 2009 ,1016–1023.
[2]
[3]
[4]
[5]
a) Alig, L.; Fritz, M.; Schneider, S. Chem. Rev. 2019, 119, 2681–2751;
b) Khusnutdinova, J. R.; Milstein, D. Angew. Chem. Int. Ed. 2015, 54,
12236–12273; c) van der Vlugt, J. I. Eur. J. Inorg. Chem. 2012, 363; d)
DuBois, D. L. Inorg. Chem. 2014, 53, 3935- 3960.
a) van Koten, G.; Milstein, D., Eds. Organometallic Pincer Chemistry;
Topics in Organometallic Chemistry Series Vol. 40; Springer: Berlin,
Heidelberg, 2013; b) Morales-Morales, D.; Jensen, C., Eds. The
Chemistry of Pincer Compounds; Elsevier Science: Amsterdam, 2007.
For reviews see: a) Milstein D. Phil. Trans. R. Soc. A 2015, 373:
20140189; b) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011, 44,
588–602; c) Gunanathan, C.; van der Vlugt, J. I.; Reek, J. N. H. Angew.
Chem. Int. Ed. 2009, 48, 8832–8846.
[20] There are only two examples of structurally characterized complexes
featuring a doubly deprotonated PNP pincer ligand: Vogt, M.; Rivada-
Wheelaghan, O.; Iron, M. A.; Leitus, G.; Diskin-Posner, Y.; Shimon, L. J.
W.; Ben-David, Y.; Milstein, D. Organometallics, 2013, 32, 300−308;
Simler, T.; Frison, G.; Braunstein, P.; Danopoulos, A. A. Dalton Trans.
2016, 45, 2800-2804.
a) Fereira, R.B.; Murray, L. J. Acc. Chem. Res., 2019, 52, 447–455; b)
Powers, I. G.; Uyeda, C. ACS Catal. 2017, 7, 936–958; c) Mankad, N. P.
Chem. Eur. J. 2016, 22, 5822–5829; d) Iglesias, M.; Sola, E.; Oro, L. A.
Homo- and Heterobimetallic Complexes in Catalysis: Cooperative
Catalysis; Kalck, P., Ed.; Springer International Publishing: Cham,
Switzerland, 2016; pp 31−58; e) Gramigna, K. M.; Dickie, D. A.; Foxmand,
B. M.; Thomas, C. M. ACS Catal., 2019, 9, 3153–3164; f) Ouyang, T.;
Wang, H. -J.; Huang, H. -H.; Wang, J. -W.; Guo, S.; Liu, W.-J.; Zhong,
D.-C.; Lu, T. -B. Angew. Chem. Int. Ed. 2018, 57, 16480–16485.; g) van
den Beuken, E. K.; Feringa, B. L.; Tetrahedron 1998 54, 12985–13011.
a) He, C.; Barrios, A. M.; Lee, D.; Kuzelka, J.; Daavydov, R. M.; Lippard,
S. J. J. Am. Chem. Soc. 2000, 122, 12683–12690; b) He, C.; Dubois, J.
L.; Hedman, B.; Hodgson, K. O.; Lippard, S. J. Angew. Chem. Int. Ed.
2001, 40, 1484–1487; c) Bera, J. K.; Sadhukhanb, N.; Majumdar, M. Eur.
J. Inorg. Chem. 2009, 4023–4038; d) Ziegler, M. S.; Lakshmi, K. V.; Tilley,
T. D. J. Am. Chem. Soc. 2017, 139, 5378−5386.
[21] a) Zhang, S.; Fallah, H.; Gardner, E. J.; Kundu, S.; Bertke, J. A.; Cundari,
T. R.; Warren, T. H. Angew. Chem. Int. Ed. 2016 , 55, 34, 9927–9931; b)
Cook, A. W.; Nguyen, T. D. Buratto, W. R.; Wu, G.; Hayton, T. W. Inorg.
Chem. 2016, 55, 12435−12440; c) Wyss, C. M.; Tate, B. K.; Bacsa, J.;
Gray, T. G.; Sadighi, J. P. Angew. Chem. 2013, 125, 13158–13161; d)
Frey, G. D.; Donnadieu, B.; Soleilhavoup, M.; Bertrand, G. Chem. Asian
J. 2011, 6, 402–405; e) Mao, Z.; Huang, J. -S.; Che, C. -M.; Zhu, N.;
Leung, S. K. -Y.; Zhou, Z. -Y. J. Am. Chem. Soc. 2005, 127, 4562–4563.
[22] A single compound was found that features a Cu4H2 core in which all
copper sites are in the same plane unlike the butterfly shaped geometry
in 4: Nkajima, T.; Kamiryo, Y.; Hachiken, K.; Nakamae, K.; Ura, Y.;
Tanase, T. Inorg. Chem., 2018, 57, 11005–11018.
[6]
[23] Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916–
2927.
[24] The chemical shifts of the μ3-hydride in 4 falls within the range from 3.10
to −1.28 ppm observed for structurally characterized copper clusters
containing μ3-H ligands: a) Li, J.; White, J. M.; Mulder, R. J.; Reid, G. E.;
Donnelly, P. S.; O’Hair, R. A. J. Inorg. Chem. 2016, 55, 9858−9868; b)
Nakamae, K.; Tanaka, M.; Kure, B.; Nakajima, T.; Ura, Y.; Tanase, T. A.
Chem. Eur. J. 2017, 23, 9457−9461, and reference 22.
[7]
[8]
[9]
Ziegler, M. S.; Levine, D. S.; Lakshmi, K. V.; Tilley T. D. J. Am. Chem.
Soc. 2016, 138, 6484−6491.
Ziegler, M. S.; Torquato, N. A.; Levine, D. S. Nicolay, A.; Celik, H.; Tilley,
T. D. Organometallics 2018, 37, 2807−2823.
Davenport, T.C.; Tilley, T. D. Angew. Chem. Int. Ed. 2011, 50, 12205–
12208.
[10] Selected examples: a) Powers, I. G.; Andjaba, J. M.; Luo, X.; Mei, J.
Uyeda, C. J. Am. Chem. Soc. 2018, 140, 4110−4118; b) Hartline, D. R.;
This article is protected by copyright. All rights reserved.