Journal of the American Chemical Society
Communication
stereoconvergence in these processes occurs by the same Ni(III) DKR
process that we have elucidated for photoredox/nickel dual catalytic
organoboron cross-coupling. This newfound knowledge regarding
the fundamental origin of enantioinduction in Ni-catalyzed
stereoconvergent processes can be used to augment stereo-
selectivity in known transformations through rational design and
may be helpful in identifying new substrate classes that can
participate via this manifold. These results are in agreement with
the lack of products with long-lived radical intermediates.
Specifically, radicals that quickly and favorably complex to the Ni
center as proposed in Figure 2 avoid radical pathways such as
cyclization by a pendant alkene. We are currently investigating
the full scope of this proposal for various Ni-catalyzed C−C
bond-forming processes involving alkyl radical intermediates,
including the factors that might change the enantiodetermining
step.
In summary, we have employed DFT calculations to
investigate the reaction pathway of the nickel/photoredox dual
catalytic cross-coupling of aryl bromides with C-centered radicals
derived from alkyltrifluoroborates. These computations suggest a
mechanistic scenario wherein the radical can enter the cross-
coupling cycle by addition to either Ni(0) or Ni(II).21 The two
pathways converge upon a common Ni(III) intermediate that is
able to release the stabilized alkyl radical via Ni−C bond
homolysis, thus establishing an unexpected equilibrium between
this high valent Ni(III) and the Ni(II)/radical pair. The cross-
coupled product is then generated via irreversible reductive
elimination. The reductive elimination barrier was computed to
be significantly higher in energy than the barrier associated with
the reversible homolysis process. Calculations show that the
stereoinduction occurs through DKR of the Ni(III) intermediate
according to the Curtin−Hammett principle. Experimental
results have offered support for the proposed stereochemical
model. Most importantly, the Curtin−Hammett DKR stereo-
induction model appears to be broadly operative in various
related stereoconvergent Ni-catalyzed processes,7,18 offering a
rationalization for the mechanism of stereoselectivity in these
transformations for the first time.
REFERENCES
■
(1) Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A.,
Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004.
(2) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to
Catalysis, 3rd ed.; University Science: Sausalito, CA, 2010.
(3) (a) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345,
433. (b) Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am.
Chem. Soc. 2015, 137, 2195.
(4) (a) Li, L.; Wang, C. Y.; Huang, R.; Biscoe, M. R. Nature Chem.
2013, 5, 607. (b) Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M.
R. J. Am. Chem. Soc. 2014, 136, 14027.
(5) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terret, J. A.; Doyle, A. G.;
MacMillan, D. W. C. Science 2014, 345, 437.
(6) Ananikov, V. P., Ed. Understanding Organometallic Reaction
Mechanisms and Catalysis; Wiley-VCH: Weinheim, Germany, 2015.
(7) (a) Lin, X.; Sun, J.; Xi, Y.; Lin, D. Organometallics 2011, 30, 3284.
(b) Lin, X.; Phillips, D. L. J. Org. Chem. 2008, 73, 3680. (c) Li, Z.; Jiang,
Y.-Y.; Fu, Y. Chem.Eur. J. 2012, 18, 4345. (d) Ren, Q.; Jiang, F.; Gong,
H. J. Organomet. Chem. 2014, 770, 130.
(8) (a) Lloyd-Jones, G. C.; Ball, L. T. Science 2014, 345, 381.
(b) Leonori, D.; Varinder K; Aggarwal, V. K. Angew. Chem., Int. Ed.
2014, 54, 1082.
(9) Frisch, M. J.; et al. Gaussian 09, rev C.01; Gaussian, Inc.:
Wallingford, CT, 2009.
(10) Um, J. M.; Gutierrez, O.; Schoenebeck, F.; Houk, K. N.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 6001.
(11) (a) Uyeda, C.; Peters, J. C. Chem. Sci. 2013, 4, 157. (b) Nomura,
́
M.; Cauchy, T.; Geoffroy, M.; Adkine, P.; Fourmigue, M. Inorg. Chem.
2006, 45, 8194. (c) Jones, G. D.; Martin, J. L.; McFarland, C.; Allen, O.
R.; Hall, R. E.; Haley, A. D.; Brandon, R. J.; Konovalova, T.; Desrochers,
P. J.; Pulay, P.; Vicic, D. A. J. Am. Chem. Soc. 2006, 128, 13175.
(12) M06-2X/6-311+G(d,p)-solvated single-point calculations using
B3LYP geometries are more effective than B3LYP alone in estimating
absolute reaction barriers. See: Krenske, E. H.; Agopcan, S.; Aviyente,
V.; Houk, K. N.; Johnson, B. A.; Holmes, A. B. J. Am. Chem. Soc. 2012,
134, 12010.
(13) Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y.-S.; Thayumanavan, S.
Acc. Chem. Res. 1996, 29, 552.
(14) Reaction of (R)-1-phenylethyltrifluoroborate using chiral ligand
L1 resulted in enantioselectivity indistinguishable from that observed
using racemic substrate. Reaction of the enantioenriched trifluoroborate
with an achiral ligand produced racemic product (see Supporting
Information). These results rule out a classical kinetic resolution for this
process.
ASSOCIATED CONTENT
* Supporting Information
■
S
(15) (a) Seeman, J. I. J. Chem. Ed. 1986, 63, 42. (b) Seeman, J. I. Chem.
Rev. 1983, 83, 84.
Computational and experimental details; complete ref 9. This
material is available free of charge via the Internet at http://pubs.
(16) Preliminary calculations of A2-TS′ corresponding to eq 2 reveal a
conformer 2 kcal/mol lower in energy than the lowest energy C-TS′.
(17) Calculated ratios were computed using the lowest two
diastereomeric transition states computed using SMD-water-UM06/6-
311+G(d,p)//UB3LYP/6-31G(d).
(18) For reviews on secondary alkyl halides in Ni-catalyzed cross-
coupling, including stereoconvergent examples, see: (a) Tasker, S. Z.;
Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299. (b) Rudolph, A.;
Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.
(19) (a) Cherney, A. H.; Reisman, S. E. J. Am. Chem. Soc. 2014, 136,
14365. (b) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem.
Soc. 2013, 135, 7442.
(20) (a) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. J. Am.
Chem. Soc. 2012, 134, 5794. (b) Zultanski, S. L.; Fu, G. C. J. Am. Chem.
Soc. 2011, 133, 15362. (c) Lu, Z.; Wilsily, A.; Fu, G. C. J. Am. Chem. Soc.
2011, 133, 8154. (d) Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2010,
132, 11908. (e) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694.
(f) Jiang, X.; Sakthivel, S.; Kulbitski, K.; Nisnevich, G.; Gandelman, M. J.
Am. Chem. Soc. 2014, 136, 9548.
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Institutes of Health (GM-087605
to M.C.K. and GM-081376 to G.A.M.) and the National Science
Foundation (CHE1213230 to M.C.K.) for financial support of
this research. Computational support was provided by XSEDE
on SDSC Gordon (TG-CHE120052). Simon Berritt and
members of the UPenn-Merck High Throughput Experimenta-
tion Center at the University of Pennsylvania are acknowledged
for purification of reaction mixtures and for access to chiral
stationary phase supercritical fluid chromatography.
(21) For a recent report on Ni(II) intermediates in the related Negishi
coupling, see: Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136,
16588.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX