9120
Asher et al.: Photoionization of trifluoromethyl compounds
13 M. Sana, G. Leroy, D. Peters, and C. Willante, J. Mol. Struct.
͑Theochem.͒ 164, 249 ͑1988͒.
ϳ28 kcal/mol higher than the value deduced from
PA͑CF2O͒, and may correspond to a different structure.
Photoionization of CF3OF produces a very weak parent,
with an apparent adiabatic IP͑CF3OF͒р12.710Ϯ0.007 eV,
significantly lower than previous values derived by photo-
electron spectroscopy.36 The threshold region of the CF3ϩ
fragment from CF3OF is suppressed by unfavorable Franck–
Condon factors for parent ionization, and a direct fit estab-
lishes only an upper limit of AP0͑CFϩ3 /CF3OF͒Ͻ13.38
Ϯ0.10 eV. However, the cusplike termination of growth in
the CF3OFϩ parent ion, at ϳ 12.97 Ϯ 0.01 eV, provides
a better estimate for the onset of the CFϩ3 fragment and
is compatible with the value of ⌬Hؠ
f 298͑CF3OF͒
ϭϪ176.9ϩϪ11..83 kcal/mol proposed here on the basis of other
arguments, which include an approximate determination of
AP0͑CF2Oϩ/CF3OF͒Ϸ14.2Ϯ0.1 eV. The latter appearance
potential is in excellent agreement with the reaction enthalpy
for CF3OF→CF2OϩF2 of 27.8 Ϯ 1.1 kcal/mol ͑298 K͒,
which can be derived from data evaluated by Batt and
Walsh.20
14 D. A. Dixon and R. Fernandez, Proceedings of the STEP-HALOCSIDE
AFEAS Workshop, Dublin, Ireland, March 1993 ͑unpublished͒.
15
͑a͒ C. W. Bock, M. Trachtman, H. Niki, and G. J. Mains, J. Phys. Chem.
98, 7976 ͑1994͒; ͑b͒ W. F. Schneider and T. J. Wallington, ibid. 99, 4353
͑1995͒; ͑c͒ C. W. Bock, M. Trachtman, H. Niki, and G. J. Mains, ibid. 99,
4354 ͑1995͒.
16
͑a͒ J. A. Montgomery, Jr., H. H. Michels, and J. S. Francisco, Chem. Phys.
Lett. 220, 391 ͑1994͒; ͑b͒ J. S. Francisco, ibid. 218, 401 ͑1994͒; ͑c͒ Chem.
Phys. 150, 19 ͑1991͒.
17 W. F. Schneider and T. J. Wallington, J. Phys. Chem. 98, 7448 ͑1994͒.
18 W. F. Schneider, T. J. Wallington, and M. D. Hurley, J. Phys. Chem. 98,
2217 ͑1994͒; W. F. Schneider, B. I. Nance, and T. J. Wallington, J. Am.
Chem. Soc. 117, 478 ͑1995͒.
19 S. W. Benson, J. Phys. Chem. 98, 2216 ͑1994͒.
20
͑a͒ L. Batt and R. Walsh, Int. J. Chem. Kinet. 14, 933 ͑1982͒; ͑b͒ 15, 605
͑1983͒.
21 W. F. Schneider, T. J. Wallington, and M. D. Hurley, J. Phys. Chem. 98,
2217 ͑1994͒.
22 M. W. Chase, C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. Mc-
Donald, and A. N. Syverud, JANAF Thermochemical Tables, 3rd ed. ͓J.
Phys. Chem. Ref. Data 14, Suppl. 1 ͑1985͔͒.
23 L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermodynamic Properties
of Individual Substances ͑Hemisphere, New York, 1991͒, Vols. 1 and 2.
24 R. L. Asher, E. H. Appelman, and B. Ruscic, J. Chem. Phys. 105, 9781
͑1996͒.
The fitted value for the appearance potential of CF3ϩ
from CF3OCl, AP0͑CFϩ3 /CF3OCl͒ р 12.85 Ϯ 0.01 eV, leads
to ⌬Hؠ
f298͑CF3OCl͒уϪ175.6Ϯ1.0 kcal/mol, D298͑CF3–OCl͒
р88.4Ϯ0.3 kcal/mol, and D298(CF3O–Cl͒р52.8ϩϪ12..50 kcal/
mol. The latter value is in very good agreement with the
upper limit of Ͻ53 kcal/mol determined recently by Renga-
rajan et al.43
25 L. A. Curtiss, K. Raghavachari, C. P. Redfern, and J. A. Pople, J. Chem.
Phys. 106, 1063 ͑1997͒.
͑a͒ K. Seppelt, Angew. Chem. Int. Ed. Engl. 16, 322 ͑1977͒; ͑b͒ G. Kloter
26
¨
and K. Seppelt, J. Am. Chem. Soc. 101, 347 ͑1979͒.
͑a͒ D. E. Gould, L. R. Anderson, D. E. Young, and W. B. Fox, J. Am.
Chem. Soc. 91, 1310 ͑1969͒; ͑b͒ C. J. Schack and W. Maya, ibid. 91, 2902
͑1969͒; ͑c͒ M. Lustig, A. R. Pitochelli, and J. K. Ruff, ibid. 89, 2841
͑1967͒.
27
28 M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W.
Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S.
Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C.
Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart,
and J. A. Pople, GAUSSIAN 94, Rev. D. 1 ͑Gaussian Inc., Pittsburgh, PA,
1994͒.
ACKNOWLEDGMENT
This work was supported by the U.S. Department of En-
ergy, Office of Basic Energy Sciences, under Contract No.
W-31-109-ENG-38.
29 P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 ͑1968͒.
30
͑a͒ B. Ruscic and J. Berkowitz, J. Phys. Chem. 97, 11451 ͑1993͒; ͑b͒ J.
1
͑a͒ World Meteorological Organization Global Ozone Research and Moni-
Chem. Phys. 100, 4498 ͑1994͒; ͑c͒ 101, 7795 ͑1994͒; ͑d͒ 101, 7975
͑1994͒; ͑e͒ 101, 10936 ͑1994͒.
toring Project, Report No. 20, UN Environment Program, WMO, Geneva,
1990; ͑b͒ World Meteorological Organization Global Ozone Research and
Monitoring Project, Report No. 25, UN Environment Program, WMO,
Geneva, 1992.
31 R. L. Asher and B. Ruscic, J. Chem. Phys. 106, 210 ͑1997͒.
32 P. C. Haarhoff, Mol. Phys. 7, 101 ͑1963͒.
33 P. M. Wilt and E. A. Jones, J. Inorg. Nucl. Chem. 30, 2933 ͑1968͒.
34 Since Haarhoff’s expression ͑Ref. 32͒ does not readily accommodate a
hindered internal rotor, which would have been the most appropriate de-
scription for the internal energy associated with the CF3 torsion in
CF3OH, CF3OF, and CF3OCl, two versions of the internal energy distri-
bution were developed: one treated the internal rotation as a pseudovibra-
tion, and the other treated it as a free internal rotation. In all three cases
the difference between the two variations was only minor, and employ-
ment of either approach gave similar overall answers. The final fits were
performed using the pseudovibrator approach, which appeared to provide
a slightly better description of the internal energy distribution than the free
rotor model.
2
͑a͒ M. J. Molina and F. S. Rowland, Nature 249, 810 ͑1974͒; ͑b͒ R. S.
Stolarski and R. D. Rundel, Geophys. Res. Lett. 2, 443 ͑1975͒.
3 See, for example, E. W. Kaiser, T. J. Wallington, and M. D. Hurley, Int. J.
Chem. Kinet. 27, 205 ͑1995͒, and references therein.
4
͑a͒ M. K. W. Ko, et al., Geophys. Res. Lett. 21, 101 ͑1994͒; ͑b͒ A. R.
Ravishankara, A. A. Turnipseed, N. R. Jensen, S. B. Barone, M. Mills, C.
J. Howard, and S. Solomon, Science 71, 263 ͑1994͒.
5 See, for example: R. Meller and G. K. Moortgat, J. Photochem. Photobiol.
A: Chem. 86, 15 ͑1995͒, and references therein.
6 See, for example, T. J. Wallington and J. C. Ball, J. Phys. Chem. 99, 3201
͑1995͒, and references therein.
7 T. J. Wallington, M. D. Hurley, W. F. Schneider, J. Sehested, and O. J.
Nielsen, J. Phys. Chem. 97, 7606 ͑1993͒.
35 See, for example, B. Ruscic, J. Chem. Phys. 85, 3776 ͑1986͒; Modelling of
Structure and Properties of Molecules, edited by Z. B. Maksic ͑Horwood,
Chichester, 1987͒, pp. 221–238.
8 A. A. Turnipseed, S. B. Barone, N. R. Jensen, D. R. Hanson, C. J.
Howard, and A. R. Ravishankara, J. Phys. Chem. 99, 6000 ͑1995͒.
9 L. G. Huey, D. R. Hanson, and E. R. Lovejoy, J. Geophys. Res. 100,
18771 ͑1995͒; ͑b͒ W. F. Schneider, T. J. Wallington, and R. E. Huie, J.
Phys. Chem. 100, 6097 ͑1996͒.
36 S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and
W. G. Mallard, J. Phys. Chem. Ref. Data 17, Suppl. 1 ͑1988͒.
37 While preparing the function for this fit, an interesting discrepancy has
surfaced. JANAF ͑Ref. 22͒ states that it uses a hindered rotor approach
and spectroscopic data of Wilt and Jones ͑Ref. 33͒ to calculate the ther-
modynamic properties of CF3OF, and it lists 3.500 kcal/mol for H298
Ϫ H0 . Using the same data, we obtain 4.081 kcal/mol from the hindered
rotor approach. The more straightforward pseudovibrator approach
(56 cmϪ1) yields an almost identical 4.060 kcal/mol for the same quantity.
The internal energy function used in our fits was constrained to corre-
10
͑a͒ W. F. Schneider, T. J. Wallington, K. Minschwaner, and E. A. Stahl-
berg, Environ. Sci. Technol. 29, 247 ͑1995͒; ͑b͒ L. T. Molina and M. J.
Molina, Geophys. Res. Lett. 23, 563 ͑1996͒.
͑a͒ E. R. Lovejoy, L. G. Huey, and D. R. Hanson, J. Geophys. Res. 100,
11
18775 ͑1995͒; ͑b͒ L. G. Huey, P. W. Villalta, E. J. Dunlea, D. R. Hanson,
and C. J. Howard, J. Phys. Chem. 100, 190 ͑1996͒.
12 W. F. Schneider and T. J. Wallington, J. Phys. Chem. 97, 12783 ͑1993͒.
J. Chem. Phys., Vol. 106, No. 22, 8 June 1997
On: Tue, 23 Dec 2014 13:45:23