effects on selectivity in metal-catalyzed reactions.9 While
this suggests that significant ionic interactions can occur
during catalysis, to our knowledge, the counteranion itself
has never been used to achieve asymmetric induction.10
We report below the first example of an enantioselective
metal-catalyzed reaction where the sole source of asym-
metry is a chiral counteranion. These results demonstrate that
ionic interactions in metal catalysis are not only important
but can be utilized to influence chirality in reaction pro-
ducts.
with either the coordinating ability or size of the anion. In
fact, the trend changes with each ligand employed. In
addition, the ee’s are independent of X- in the more polar
acetonitrile solvent. This demonstrates that strong ion-pairing
does exist in Cu+ X- in nonpolar solvents, suggesting it
would be a reasonable system to explore the effect of a chiral
anion on enantioselectivity.
The chiral counteranion prepared, 3-, contains two bi-
naphthol units bound to a tetrahedral boron center (Scheme
1).14 The chiral binaphthols generate a single C2 symmetric
The systems examined for counteranion influence on chiral
induction are copper-catalyzed nitrene11 and carbene12 trans-
fer reactions to prochiral R-olefins. Prior to exploring the
influence of chiral counteranions on these reactions, the
degree of ion-pairing in Cu+ X- during catalysis was
determined. As illustrated in Table 1, variation of the weakly
Scheme 1
Table 1. Counteranion Influence on CuX-Catalyzed Styrene
Aziridinationa
enantiomer upon complexation to boron and therefore require
no subsequent resolution. The silver salt of (R)-3- can be
readily generated by the reaction of 2 equiv of R-binaphthol
ligand
X
% ee (C6H6)b
% ee (MeCN)b
(R)-1
(R)-1
(R)-1
(R)-1
(S)-2
(S)-2
(S)-2
(S)-2
OTf
ClO4
Cl
PF6
OTf
ClO4
Cl
1 (S)
5 (S)
28 (S)
28 (S)
28 (S)
28 (S)
2 (R)
2 (R)
2 (R)
2 (R)
15
with H2BBr‚SMe2 in dichloromethane followed by slow
addition to Ag2CO3 in acetonitrile. Ag+ (R)-3- provides a
useful precursor for incorporating 3- into metal halides.
The reaction of Ag+ (R)-3- with CuCl in acetonitrile,
followed by precipitation with diethyl ether, provides Cu+
(R)-3-‚4NCMe as a white solid in 79% yield. The S-
enantiomer, Cu+ (S)-3-, can be similarly prepared from
S-binaphthol.
17 (S)
33 (S)
66 (R)
57 (R)
26 (R)
33 (R)
PF6
a [styrene]/[PhINTs] ) 5. b Major enantiomer in parentheses, determined
by HPLC on a (S,S) Whelk-O 1 column (Regis).11c
The crystallization of Cu+ (R)-3- with four acetonitrile
molecules suggests that the copper complex exists as the
+
ionic 18-electron complex Cu(NCMe)4 (R)-3-. However,
coordinating counteranion (X ) OTf, ClO4, PF6) in the CuX-
catalyzed aziridination of styrene with PhINTs13 in the
presence of chiral bis(oxazoline) ligands 1 and 2 leads to
changes in ee’s of over 30% in benzene solvent. This anion
influence on enantioselectivity displays no consistent trend
X-ray structural analysis reveals two isomeric complexes
(9) For representative examples, see: (a) Evans, D. A.; Kozlowski, M.
C.; Murry, J. A.; Burgey, C. S.; Campos, K. R.; Connell, B. T.; Staples, R.
J. J. Am. Chem. Soc. 1999, 121, 669-685. (b) Lanza, G.; Fragala, I. L.;
Marks, T. J. J. Am. Chem. Soc. 1998, 120, 8257-8258. (c) Johannsen, M.;
Jorgensen, K. A. J. Chem. Soc., Perkin Trans. 1997, 1183-1185. (d) Trost,
B. M.; Bunt, R. C. J. Am. Chem. Soc. 1998, 120, 70-79. (e) Bayersdorfer,
R.; Ganter, B.; Englert, U.; Keim, W.; Vogt, D. J. Organomet. Chem. 1998,
552, 187-194.
(10) Buriak, M.; Osborn, J. A. Organometallics 1996, 15, 3161-3169.
(11) (a) Jacobsen, E. N. In ComprehensiVe Asymmetric Catalysis;
Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
p 607. (b) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.;
Barnes, D. M. J. Am. Chem. Soc. 1993, 115, 5328-5329. (c) Li, Z.; Quan,
P. W.; Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 5889-5890.
(12) (a) Zollinger, H. Diazo Chemistry II, VCH: Weinheim, 1995. (b)
Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem.
Soc. 1991, 113, 726-728.
(4) Sato, K. Kadowaki, K. Soai, Angew. Chem., Int. Ed. 2000, 39, 1510-
1512.
(5) Chiral phase transfer catalysts have been shown to induce high ee’s:
(a) Hiyama, T.; Mishima, T.; Sawada, H.; Nozaki, H. J. Am. Chem. Soc.
1975, 97, 1626-1627. (b) Hughes, D. L.; Dolling, U. H.; Ryan, K. M.;
Schoenewaldt, E. F.; Grabowski, E. J. J. J. Org. Chem. 1987, 52, 4745-
4752.
(6) For chiral environment approaches to catalysis: (a) Walsh, P. J.;
Balsells, J. J. Am. Chem. Soc. 2000, 122, 1802-1803 and references therein.
(b) Brunkan, N. M.; Gagne, M. R. J. Am. Chem. Soc. 2000, 122, 6217.
(7) Solution ion-pairing with a chiral anion has been recently reported
to resolve a chiral iron complex: Lacour, J.; Jodry, J. J.; Ginglinger, C.;
Torche-Haldimann, S. Angew. Chem., Int. Ed. 1998, 37, 2379-2380
(8) For recent examples of the use of chiral counterions, see: (a) Owen,
D. J.; Schuster, G. B. J. Am. Chem. Soc. 1996, 118, 259-260. (b) Owen,
D. J.; VanDerveer, D.; Schuster, G. B. J. Am. Chem. Soc. 1998, 120, 1705-
1717. (c) Schlitzer, D. S.; Novak, B. M. J. Am. Chem. Soc. 1998, 120,
2196-2197. (d) Chang; S.; Galvin, J. M.; Jacobsen, E. N. J. Am. Chem.
Soc. 1994, 116, 6937.
(13) Yamada, T.; Yamamoto, M.; Okawara. Chem. Lett. 1975, 361-
362.
(14) Ishihara, M.; Miyata, K.; Hattori, T.; Tada, H.; Yamamoto. J. Am.
Chem. Soc. 1994, 116, 10520-10524.
(15) Kaufmann, R.; Boese. Angew. Chem., Int. Ed. Engl. 1990, 29, 545-
546.
4166
Org. Lett., Vol. 2, No. 26, 2000