5632 J. Phys. Chem. A, Vol. 101, No. 31, 1997
Ma et al.
share some common features.1b,32,33 The electron transfer
process between the excited singlet fullerene and DEA is
inefficient in nonpolar saturated hydrocarbon solvents such as
hexane and methylcyclohexane, so inefficient for the pyrroli-
dino-C60 derivative VII that the fluorescence quenching is
absent. A similar absence of fluorescence quenching in
nonpolar saturated hydrocarbon solvents has been reported for
the C60-triethylamine system.35 In a more polar solvent
environment with the presence of a polar cosolvent, quenchings
of the excited singlet states of the derivatives by DEA are not
only close to diffusion-controlled but also consist of substantial
contributions from static interactions (Figure 8).33
(8) Ma, B.; Sun, Y.-P. J. Chem. Soc., Perkin Trans. 2 1996, 2157.
(9) Isaacs, L.; Diederich, F. HelV. Chim. Acta 1993, 76, 2454.
(10) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993, 115,
9798.
(11) Hirsch, A. The Chemistry of Fullerenes; Thieme: Stuttgart, 1994.
(12) Diederich, F.; Thilgen, C. Science 1996, 271, 317.
(13) (a) Friedman, S. H.; DeCamp, D. L.; Sijbesma, R. P.; Srdanov,
G.; Wudl, F.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6506. (b)
Sijbesma, R.; Srdanov, G.; Wudl. F.; Castoro, J. A.; Wilkins, C.; Friedman,
S. H.; De Camp, D. L.; Kenyon, G. L. J. Am. Chem. Soc. 1993, 115, 6510.
(14) Toniolo, C.; Bianco, A.; Maggini, M.; Scorrano, G.; Prato, M.;
Marastoni, M.; Tomatis, R.; Spisani, S.; Palu´, G.; Blair, E. D. J. Med. Chem.
1994, 37, 4558.
(15) (a) Foote, C. S. ACS Symp. Ser. 616 (Light ActiVated Pest Control)
1995, 17. (b) Jensen, A. W.; Wilson, S. R.; Schuster, D. I. Bioorg. Med.
Chem. 1996, 4, 767.
(16) (a) Signorini, R.; Zerbetto, M.; Meneghetti, M.; Bozio, R.; Maggini,
M.; De Faveri, C.; Prato, M.; Scorrano, G. J. Chem. Soc., Chem. Commun.
1996, 1891. (b) Maggini, M.; Scorrano, G.; Prato, M.; Brusatin, G.;
Innocenzi, P.; Guglielmi, M.; Renier, A.; Signorini, R.; Meneghetti, M.;
Bozio, R. AdV. Mater. 1995, 7, 404. (c) Cha, M.; Sariciftci, N. S.; Heeger,
A. J.; Hummelen, J. C.; Wudl, F. Appl. Phys. Lett. 1995, 67, 3850.
(17) Sun, Y.-P.; Riggs, E. J.; Liu, B. Chem. Mat. 1997, 9, 1268.
(18) (a) Anderson, J. L.; An, Y.-Z.; Rubin, Y.; Foote; C. S. J. Am. Chem.
Soc. 1994, 116, 9763. (b) Lin, S.-K.; Shiu, L.-L.; Chien, K. M.; Luh, T.-
Y.; Lin, T.-I. J. Phys. Chem. 1995, 99, 105. (c) Guldi, D. M.; Asmus, K.-
D. J. Phys. Chem. 1997, 101, 1472.
(19) Sun, Y.-P.; Ma, B.; Riggs, J. E.; Bunker, C. E. In Fullerenes, Recent
AdVances in the Chemistry and Physics of Fullerenes and Related Materials,
Vol 4; Kadish, K. M., Ruoff, R. S., Eds.: The Electrochemical Society
Inc.: Pennington, NJ, in press.
(20) Strickler, S. J.; Berg, R. A. J. Chem. Phys. 1962, 37, 814.
(21) Sension, R. J.; Phillips, C. M.; Szarka, A. Z.; Romanow, W. J.;
McGhie, A. R.; McCauley, J. P., Jr.; Smith, A. B., III; Hochstrasser, R. M.
J. Phys. Chem. 1991, 69, 6075.
For the formation of exciplex, a difference between C60 and
the C60 derivatives is that the C60-DEA exciplex emission can
only be observed in nonpolar saturated hydrocarbon solvents,
while for the C60 derivatives there are also exciplex emissions
in toluene, a solvent that is nonpolar but more polarizable than
saturated hydrocarbons. However, despite the somewhat dif-
ferent solvent sensitivity for the exciplex emission, the funda-
mental excited state processes of C60 and the C60 derivatives in
the presence of DEA should be similar. The absence of exciplex
emissions in a more polar or polarizable solvent environment
is likely due to solvent polarity effects. For the exciplex state,
a competing decay process to fluorescence might be ionization
for the formation of solvated ion pairs, which is strongly solvent
polarity dependent.37 In fact, the observation of radical cation
and anion species in a transient absorption study of C60-amine
systems in room-temperature toluene has been reported.38
(22) Kim, D.; Lee, M.; Suh, Y. D.; Kim, S. K. J. Am. Chem. Soc. 1992,
114, 4429.
(23) Wang, Y.; Cao, J.; Schuster, D. I.; Wilson, S. R. Tetrahedron Lett.
1995, 36, 6843.
(24) Bingel, C. Chem. Ber. 1993, 126, 1957.
(25) Lawson, G. E.; Kitaygorodskiy, A.; Ma, B.; Bunker, C. E.; Sun,
Y.-P. J. Chem. Soc., Chem. Commun. 1995, 2225.
(26) Bunker, C. E.; Sun, Y.-P.; Gord, J. R. J. Am. Chem. Soc., submitted.
(27) Isaacs, L.; Diederich, F. HelV. Chim. Acta 1993, 76, 1231.
(28) Catala´n, J.; Saiz, J. L.; Laynez, J. L.; Jagerovic, N.; Elguero, J.
Angew. Chem., Int. Ed. Engl. 1995, 34, 105.
(29) Karstens, T.; Kobs, K. J. Phys. Chem. 1980, 84, 14.
(30) For VI, the decay consists of minor contribution from a short-lived
component, which might be attributed to scattering or trace amount of
impurity.
Acknowledgment. We thank Bing Liu for experimental
assistance and Dr. James Gord of the Wright Laboratory for
the use of TCSPC equipment for some of the fluorescence
lifetimes. Financial support from the National Science Founda-
tion (CHE-9320558) is gratefully acknowledged. The research
assistantships provided to B.M. and C.E.B. were provided in
part by the Department of Energy through DOE/EPSCoR
cooperative agreement DE-FG02-91ER75666.
(31) Williams, R. M.; Zwier, J. M.; Verhoeven, J. W. J. Am. Chem.
Soc. 1995, 117, 4093.
(32) Palit, D. K.; Ghosh, H. N.; Pal, H.; Sapre, A. V.; Mittal, J. P.;
Seshadri, R.; Rao, C. N. R. Chem. Phys. Lett. 1992, 198, 113.
(33) Sun, Y.-P.; Bunker, C. E.; Ma, B. J. Am. Chem. Soc. 1994, 116,
9692.
References and Notes
(1) (a) Foote, C. S. In Topics in Current Chemistry: Electron Transfer
I; Mattay, J., Ed.; Springer-Verlag: Berlin, 1994; p 347. (b) Sun, Y.-P. In
Molecular and Supramolecular Photochemistry, Vol. 1; Ramamurthy, V.,
Ed., Marcel Dekker: New York, 1997, in press.
(34) Birks, J. B. Photophysics of Aromatic Molecules; Wiley-Inter-
science: London, 1970.
(35) Sun, Y.-P.; Ma, B.; Lawson, G. E. Chem. Phys. Lett. 1995, 233,
57.
(2) (a) Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. D.; Diederich,
F.; Fostiropoulos, K.; Huffman, D. R.; Kratschmer, W.; Rubin, Y.; Schriver,
K. E.; Sensharma, D.; Whetten, R. L. J. Phys. Chem. 1990, 94, 8630. (b)
Taylor, R.; Hare, J. P.; Abdulsada, A.; Kroto, H. W. J. Chem. Soc., Chem.
Commun. 1990, 1423.
(3) Arbogast, J. W.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.;
Diederich, F. N.; Alvarez, M. M.; Whetten, R. B. J. Phys. Chem. 1991, 95,
11.
(4) Sun, Y.-P.; Wang, P.; Hamilton, N. B. J. Am. Chem. Soc. 1993,
115, 6378.
(5) Arbogast, J. W.; Foote, C. S. J. Am. Chem. Soc. 1991, 113, 8886.
(6) Sun, Y.-P.; Bunker, C. E. J. Phys. Chem. 1993, 97, 6770.
(7) (a) Wang, Y. J. Phys. Chem. 1992, 96, 764. (b) Sibley, S. P.;
Argentine, S. M.; Francis, A. H. Chem. Phys. Lett. 1992, 188, 187. (c)
Catala´n, J.; Elguero, J. J. Am. Chem. Soc. 1993, 115, 9249.
(36) (a) Hudson, B. S.; Kohler, B. E.; Schulten, K. In Excited States;
Lim, E. C., Ed., Academic Press: New York, 1982; Vol. 6, p 1. (b) Saltiel,
J.; Sun, Y.-P. In Photochromism, Molecules and Systems; Du¨rr, H., Bouas-
Laurent, H., Eds.; Elsevier: Amsterdam, 1990; p 64. (c) Kohler, B. E. Chem.
ReV. 1993, 93, 41.
(37) Sun, Y.-P.; Ma, B. Chem. Phys. Lett. 1995, 236, 285.
(38) (a) Ghosh, H. N.; Pal, H.; Sapre, A. V.; Mittal, J. P. J. Am. Chem.
Soc. 1993, 115, 11722. (b) Park, J.; Kim, D.; Suh, Y. D.; Kim, S. K. J.
Phys. Chem. 1994, 98, 12715. (c) Ito, O.; Sasaki, Y.; Yoshikawa, Y.;
Watanabe, A. J. Phys. Chem. 1995, 99, 9838. (d) Sasaki, Y.; Yoshikawa,
Y.; Watanabe, A.; Ito, O. J. Chem. Soc., Faraday Trans. 1995, 91, 2287.