Macromolecules, Vol. 37, No. 14, 2004
Communications to the Editor 5135
important question and will be pursued in future
reports.
Ack n ow led gm en t. The authors are grateful for the
financial support from NASA PERS programs (NASA
Glenn).
Su p p or tin g In for m a tion Ava ila ble: Complete experi-
mental description, physical properties of the prepolymers and
single ion conductors, impedance of Li/Li cell, and postmortem
analysis data. This material is available free of charge via the
Internet at http://pubs.acs.org.
Refer en ces a n d Notes
(1) Gray, F. M., Ed.; Solid Polymer Electrolytes: Fundamentals
and Technological Applications; VCH Publishing: New
York, 1991.
(2) Bannister, D. J .; Davies, G. R.; Ward, I. M.; McIntyre, J . E.
Polymer 1984, 25, 1291.
(3) Ito, Y.; Ohno, H. Solid State Ionics 1995, 79, 300.
(4) Zhou, G. B.; Khon, I. M.; Smid, J . Polym. Commun. 1989,
30, 52.
(5) Kobayashi, N.; Uchiyama, M.; Tsuchida, E. Solid State
Ionics 1985, 17, 307.
F igu r e 3. Charge/discharge profile of the Li/polyelectrolyte/
Li cell before the impedance measurement (SIC with EO/Li )
40) (electrode area is 1 cm2, membrane thickness is 100 µm).
(6) Zhou, G. B.; Khon, I. M.; Smid, J . Macromolecules 1993, 26,
2202.
(7) Tsuchida, E.; Ohno, H.; Kobayashi, N.; Ishizaka, H. Mac-
romolecules 1989, 22, 1771.
(8) Zhang, S. S.; Liu, Q. G.; Yang, L. L. Polymer 1994, 35, 3740.
(9) Benrabah, D.; Sylla, S.; Alloin, F.; Sanchez, J . Y.; Armand,
M. Electrochim. Acta 1995, 40, 2259.
(10) Onishi, K.; Matsumoto, M.; Nakacho, M.; Shigehara, K.
Chem. Mater. 1996, 8, 469.
(11) Fujinami, T.; Tokimune, A.; Mehta, M. A.; Shriver, D. F.;
Rawsky, G. C. Chem. Mater. 1997, 9, 2236.
(12) Watanabe, M.; Suzuki, Y.; Nishimoto, A. Electrochim. Acta
2000, 45, 1187.
(13) Bayoudh, S.; Parizel, N.; Reibel, L. Polym. Int. 2000, 49,
703.
(14) Florjanczyk, Z.; Bzducha, W.; Langwald, N.; Dygas, J . R.;
Kork, F.; Misztal-Faraj, B. Electrochim. Acta 2000, 45, 3563.
(15) Xu, W.; Angell, C. A. Solid State Ionics 2002, 147, 295.
(16) Snyder, J . F.; Ratner, M. A.; Shriver, D. F. J . Electrochem.
Soc. 2003, 150, A1090.
(17) Doyle, M.; Wang, L.;Yang, Z.; Choi, K. J . Electrochem. Soc.
2003, 150, D185.
(18) Sun, X. G.; Angell, C. A. Solid State Ionics 2004, in press.
(19) Sun, X. G.; Liu, G.; Xie, J .; Han, Y.; Kerr, J . B. Solid State
Ionics 2004, in press.
(20) Sun, X. G.; Reeder, C.; Kerr, J . B. Macromolecules 2004,
37, 2219.
(21) Marchese, L.; Andrei, M.; Roggero, A.; Passerini, S.; Pros-
peri, P.; Scrosati, B. Electrochim. Acta 1992, 37, 1559.
(22) Xia, D. W.; Soltz, D.; Smid, J . Solid State Ionics 1984, 14,
221.
(23) Sun, X. G.; Hou, J .; Kerr, J . B., to be published.
(24) Kerr, J . B.; Sloop, S. E.; Liu, G.; Han, Y. B.; Hou, J .; Wang,
S. J . Power Sources 2002, 110, 389.
in the potential with continued cycling. After the cell
cycling was resumed, it quickly failed and signs of
polarization and concentration relaxation were ob-
served. This suggests that some small, mobile anionic
species were produced, and covalent bond breaking was
confirmed from the postmortem gas chromatography
analysis of the dichloromethane extract of the cycled SIC
in which the side chain fragment (pentaethylene glycol
monomethyl ether) and further decomposed smaller
fragments (tetraethylene glycol monomethyl ether and
triethylene glycol monomethyl ether) were observed.
Previously with the polyacrylate SIC’s, such decomposi-
tion was measured qualitatively.20 In this case, the
decomposition was measured quantitatively by use of
an internal standard, and the result showed that the
decomposed product was approximately 1.3 wt % of the
total amount of the SIC.
The postmortem analysis of the cycled Li/Li sym-
metric cells suggests that even the polyepoxide ethers
are not stable to metallic lithium and may require the
use of carbon anodes as used in lithium ion batteries.
The instability may be related to the large interfacial
impedances observed at the lithium electrodes which
are orders of magnitude higher than those observed
with binary salt polymer electrolytes.26 Such large
impedances prevent the use of the cells at practical rates
and may be attributable to the lower conductivity of the
SIC which may be exacerbated by inhibition of the
polymer motion at the electrode surface. Whether this
is simply due to spatial inhibition or is compounded by
some form of self-ordering at the interfaces is an
(25) Doeff, M. M.; Edman, L.; Sloop, S. E.; Kerr, J . B.; De J onghe,
L. C. J . Power Sources 2000, 89, 227.
(26) Persi, L.; Croce, F.; Scrosati, B.; Plichta, E.; Hendrickson,
M. A. J . Electrochem. Soc. 2002, 149, A212.
MA049331C