J. B. Bialecki et al.
Table 1. A list of peaks observed in negative-mode CID fragmentation of [M − X]− ions of some glucosinolatesa
Fragment ions specific to each
R-substituent (m/z)
Fragment ions common to all
−
[
M − X]
(m/z)
R-substituent and its
nominal mass (Da)
glucosinolates
−
−
Glucosinolate
(m/z)
R-C( NOH)S
R-C(S)OSO2
Sinigrin (1)
358
388
394
399
408
422
420
422
-CH2CH CH2 (41)
-CH2CH(OH)CH CH2 (71)
-C6H5 (77)
75, 80, 96, 97, 119, 195, 259, 275
75, 80, 96, 97, 119, 195, 259, 275
75, 80, 96, 97, 119, 195, 259, 275
75, 80, 96, 97, 119, 195, 259, 275
75, 80, 96, 97, 119, 195, 259, 275
75, 80, 96, 97, 119, 195, 259, 275
75, 80, 96, 97, 119, 195, 259, 275
75, 80, 96, 97, 119, 195, 259, 275
116
146
152
157
166
180
178
180
165
195
201
206
215
229
227
229
Progoitrin (2)
Phenyl glucosinolate (3)
Phenyl-d5 glucosinolate (4)
Glucotropaeolin (5)
Gluconasturtiin (6)
Glucoerucin (7)
-C6D5 (82)
-CH2C6H5 (91)
-CH2-CH2-C6H5 (105)
-(CH2)4SCH3 (103)
-(CH2)3SOCH3 (105)
Glucoiberin (8)
a
X = K or NH4.
ion is widely used for qualitative and quantitative investigations
of glucosinolates, the thioglycosyl ion at m/z 75, which is specific
for thioglucosyl moiety, appears to be a better and more specific
choice for MRM determinations.
[11] F. A. Mellon, R. N. Bennett, B. Holst, G. Williamson. Intact
glucosinolate analysis in plant extracts by programmed cone
voltage electrospray LC/MS: performance and comparison with
LC/MS/MS methods. Anal. Biochem. 2002, 306, 83.
[
[
[
12] B. Matthaus, H. Luftmann. Glucosinolates in members of the family
brassicaceae: separation and identification by LC/ESI-MS–MS.
J. Agric. Food Chem. 2000, 48, 2234.
13] G. R. Fenwick, J. Eagles, R. Self. The fast atom bombardment spectra
of glucosinolates and glucosinolate mixtures. Org. Mass Spectrom.
Acknowledgements
ThisresearchwassupportedbyfundsprovidedbyStevensInstitute
of Technology, NJ. J. B. acknowledges the support received by a
Robert Crooks Stanley Fellowship.
1
982, 17, 544.
14] C. L. Zrybko, E. K. Fukuda, R. T. Rosen. Determination of
glucosinolates in domestic and wild mustard by high-performance
liquid chromatography with confirmation by electrospray mass
spectrometry and photodiode-array detection. J. Chromatogr. A
Supporting information
1
997, 767, 43.
Supporting information may be found in the online version of this
article.
[15] Q. Tian, R. A. Rosselot, S. J. Schwartz. Quantitative determination of
intact glucosinolates in broccoli, broccoli sprouts, Brussels sprouts,
and cauliflower by high-performance liquid chromatography-
electrospray ionization-tandem mass spectrometry. Anal. Biochem.
2
005, 343, 93.
References
[16] L. Song, J. J. Morrison, N. P. Botting, P. J. Thornalley. Analysis of
glucosinolates,isothiocyanates,andaminedegradationproductsin
vegetable extracts and blood plasma by LC-MS/MS. Anal. Biochem.
[
[
[
[
[
1] S. S. Hecht. Chemoprevention by isothiocyanates. J. Cell. Biochem.
995, 22, 195.
2] S. S. Hecht. Inhibition of carcinogenesis by isothiocyanates. Drug
Metab. Rev. 2000, 32, 395.
1
2
005, 347, 234.
[
17] S. Mill a´ n, M. C. Sampedro, P. Gallejones, A. Castell o´ n, M. L. Ibargoitia,
M. A. Goicolea, R. J. Barrio. Identification and quantification of
glucosinolates in rapeseed using liquid chromatography-ion trap
mass spectrometry. Anal. Bioanal. Chem. 2009, 394, 1661.
18] J. W. Fahey, P. Talalay, A. T. Zalcmann. The chemical diversity and
distribution of glucosinolates and isothiocyanates among plants.
Phytochemistry 2001, 56, 50.
3] B. A. Halkier, J. Gershenzon. Biology and biochemistry of
glucosinolates. Ann. Rev. Plant Biol. 2006, 57, 303.
4] J. Gershenzon, C. Mueller. Phytochemistry reviews special issue on
glucosinolates. Phytochem. Rev. 2009, 8, 1.
[
5] P. S. Kokkonen, J. van der Greef, W. M. A. Niessen, U. R. Tjaden,
G. J. ten Hove, G. van der Werken. Identification of intact
glucosinolates using direct coupling of high-performance liquid
chromatography with continuous-flow frit fast atom bombardment
tandem mass spectrometry. Biol. Mass Spectrom. 1991, 20, 259.
6] G. R. Fenwick, J. Eagles, R. Gmelin, R. Rakow. The mass spectra
of glucosinolates and desulphoglucosinolates. A useful aid for
structural analysis. Biomed. Mass Spectrom. 1981, 9, 410.
[
19] J. B. Bialecki, J. Ruzicka, A. B. Attygalle. Synthesis of d5-phenyl
glucosinolate. J. Labelled Comp. Rad. 2007, 50, 711.
20] L. Xian, M. H. Kushad. Correlation of glucosinolate to myrosinase
activity in horseradish (Armoracia rusticana). J. Agric. Food Chem.
[
[
[
2
004, 52, 6950.
[
[
[
[
21] L. West, I. Tsui, G. Haas. Single column approach for the liquid
chromatographic separation of polar and non-polar glucosinolates
from broccoli sprouts and seeds. J Chromatogr. A 2002, 966, 227.
22] A. J. Mitchell, K. S. Murray, P. J. Newman, P. E. Clark. Thiohydroxam-
ato complexes of iron(III). Synthesis, magnetism and Moessbauer
spectra. Aust. J. Chem. 1977, 30, 2439.
23] A. F. Hegarty, M. Mullane. Large stereoelectronic effect in 1,3-
dehydrohalogenation to form a 1,3-dipole. J. Chem. Soc. Chem.
Commun. 1984, 4, 229.
7] T. Prestera, J. W. Fahey, J. L. Kachinski, P. Talalay. Comprehensive
chromatographic and spectroscopic methods for the separation
and identification of intact glucosinolates. Anal. Biochem. 1996,
239, 168.
[
[
8] R. N. Bennett, F. A. Mellon, P. A. Kroon. Screening crucifer seeds
as sources of specific intact glucosinolate using ion-pair high-
performance liquid chromatography negative ion electrospray
mass spectrometry. J. Agric. Food Chem. 2004, 52, 428.
9] J. Eagles,G. R. Fenwick,R. Gmelin,R. Rakow.Thechemicalionization
mass spectra of glucosinolates (mustard oil glycosides) and
desulphoglucosinolates. A useful aid for structural analysis. Biomed.
Mass Spectrom. 1981, 8, 265.
24] J. M. Mercero, J. M. Matxain, X. Lopez, D. M. York, A. Largo, L. A.
Eriksson,J.M.Ugalde.Theoreticalmethodsthathelpunderstanding
the structure and reactivity of gas phase ions. Int. J. Mass Spectrom.
2
005, 240, 37.
[
25] R. Ditchfield, W. J. Hehre, J. A. Pople. Self-consistent molecular-
orbital methods. IX. An extended gaussian-type basis for molecular-
orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 720.
[
10] C. H. Botting, N. E. Davidson, D. W. Griffiths, R. N. Bennett,
N. P. Botting. Analysis of intact glucosinolates by MALDI-TOF mass
spectrometry. J. Agric. Food Chem. 2002, 50, 983.
www.interscience.wiley.com/journal/jms
Copyright ꢀc 2009 John Wiley & Sons, Ltd.
J. Mass. Spectrom. 2010, 45, 272–283