The Journal of Organic Chemistry
Note
13C NMR (100 MHz, acetone-d6, δ): 168.8, 142.7, 140.2, 133.9, 132.6,
132.3, 132.0, 131.6, 130.4, 128.1, 128.0, 127.9, 127.8, 61.2, 14.0.
HRMS (ESI/Q-TOF, m/z) calcd for C28H25O4 [M + H]+, 425.1747;
found, 425.1745. Rf: 0.48 (silica, CH2Cl2/heptane 1:1). FTIR (neat,
cm−1): selected absorptions 2980w, 1709s, 1597m.
ORCID
Notes
The authors declare no competing financial interest.
13H,14H-Dihydrofluoreno[1,2-a]fluorene-13,14-dione (4b). Com-
pound 1b (1.12 g, 2.65 mmol) was added to a 25 mL round-bottom
flask. Concentrated sulfuric acid (8 mL) was then added, and the
reaction was stirred at 90 °C for 40 min. The resulting dark mixture
was added dropwise to a saturated solution of NaHCO3 to produce a
bright orange precipitate, which was filtered, washed with H2O, and
allowed to dry, affording compound 4b as a bright orange solid (780
ACKNOWLEDGMENTS
■
We acknowledge Cal Poly’s Research, Scholarly, and Creative
Activities (RSCA) Grant Program and the Frost Summer
Research Program for financial support of this work. We thank
Professor Michael M. Haley (University of Oregon) for helpful
discussions. We thank the Mass Spectrometry Facility at the
University of Illinois at Urbana−Champaign for measuring the
mass spectra of new compounds.
1
mg, 89% yield). Mp 265−270 °C dec. H NMR (400 MHz, CDCl3,
δ): 7.95 (d, 2H, J = 8.3 Hz), 7.67 (d, 2H, J = 7.3 Hz), 7.63 (d, 2H, J =
8.3 Hz), 7.52 (d, 2H, J = 7.3 Hz), 7.44 (td, 2H, J = 7.3, 1.1 Hz), 7.32
(td, 2H, J = 7.3, 0.9 Hz). 13C NMR (100 MHz, CDCl3, δ): 191.9,
149.4, 142.9, 137.2, 136.6, 135.5, 134.1, 130.5, 130.1, 124.80, 124.75,
120.7, 119.3. HRMS (EI, m/z) calcd for C24H12O2, 332.08373; found,
332.08345. Rf: 0.35 (silica, CH2Cl2/heptane 1:1). FTIR (neat, cm−1):
selected absorptions 3041w, 1675s, 1605m.
REFERENCES
■
(1) Randic,
́
M. Chem. Rev. 2003, 103, 3449−3606.
(2) (a) Watson, M. D.; Fechtenkotter, A.; Mullen, K. Chem. Rev.
̈
̈
2001, 101, 1267−1300. (b) Wu, J.; Pisula, W.; Mullen, K. Chem. Rev.
2007, 107, 718−747.
(3) (a) Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296−
1323. (b) Di, C.; Zhang, F.; Zhu, D. Adv. Mater. 2013, 25, 313−330.
(4) Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J.
Adv. Mater. 2011, 23, 926−952.
(5) Schlenker, C. W.; Thompson, M. E. Top. Curr. Chem. 2011, 312,
175−212.
(6) Desai, N. B.; McKelvie, N.; Ramirez, F. J. Am. Chem. Soc. 1962,
84, 1745−1747.
(7) (a) Mills, N. J. Org. Chem. 2013, 78, 4629−4641. (b) Usta, H.;
Risko, C.; Wang, Z.; Huang, H.; Deliomeroglu, M. K.; Zhukhovitskiy,
A.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 5586−5608.
(c) Andrew, T. L.; Cox, J. R.; Swager, T. M. Org. Lett. 2010, 12, 5302−
5305.
(8) (a) Goto, K.; Kubo, T.; Yamamoto, K.; Nakasuji, K.; Sato, K.;
Shiomi, D.; Takui, T.; Kubota, K.; Kobayashi, T.; Yakusi, K.; Ouyang,
J. J. Am. Chem. Soc. 1999, 121, 1619−1620. (b) Uchida, K.; Ito, S.;
Nakano, M.; Abe, M.; Kubo, T. J. Am. Chem. Soc. 2016, 138, 2399−
2410.
̈
Absorption Spectra. Absorption spectra were measured on an
Agilent Technologies Cary Series UV−vis spectrophotometer using 10
mm quartz cuvettes in spectroscopic grade CH2Cl2. Molar
absorptivities (ε) were measured according to the Beer−Lambert
equation (ε = Acl). The reported spectra show the average ε for each
wavelength from three freshly prepared solutions of 4a and 4b (9.30 ×
10−6, 1.23 × 10−5, and 1.25 × 10−5 for 4a; 1.17 × 10−5, 1.25 × 10−5,
1.36 × 10−5 for 4b).
Cyclic Voltammetry. Cyclic voltammetry (CV) measurements
were performed under N2 on a CH Instruments potentiostat (Model
760B) using a Ag/AgNO3 reference electrode (containing a 0.01 M
solution of AgNO3 in CH3CN), a Pt disk working electrode, and a Pt
wire counter electrode. Measurements were performed at a sweep rate
of 100 mV/s in dry, degassed CH2Cl2 containing Bu4NPF6 (0.1 M) as
a supporting electrolyte. The ferrocene/ferrocenium (Fc/Fc+)
reversible oxidation was used as an internal standard; Fc was added
to the samples and measured directly after measurements of pure 4a
and 4b. The LUMO energy levels of 4a and 4b were estimated using
the following equation:
E
LUMO(eV) = −[Eonset − Eonset(Fc/Fc+)] − 4.80 eV
(9) Ohashi, K.; Kubo, T.; Masui, T.; Yamamoto, K.; Nakasuji, K.;
Takui, T.; Kai, Y.; Murata, I. J. Am. Chem. Soc. 1998, 120, 2018−2027.
(10) (a) Marshall, J. L.; Lehnherr, D.; Lindner, B. D.; Tykwinski, R.
R. ChemPlusChem 2017, 82, 967−1001.
where Eonset is the onset potential for the first reductions of 4a or 4a
and Eonset(Fc/Fc+) is the onset potential for the oxidation of the Fc/
Fc+. The value −4.80 eV is the HOMO energy of ferrocene compared
to the vacuum level. The plots shown in Figure 3 are referenced
against Fc/Fc+ (half-wave potential = 0 V). The value for Eonset(Fc/
Fc+) was determined to be −0.09 V. The value for Eonset was
determined to be 1.33 V for 4a and 1.36 V for 4b. Using the equation
above, the LUMO energies for 4a and 4b were estimated to be −3.56
eV and −3.53 eV, respectively.
Calculations. Density functional calculations were performed using
the B3LYP method in the 6-31G* basis set. Calculations were
performed using the Spartan 14 software package (Wavefunction, Inc.
Irvine, CA, USA).36
(11) (a) Anthony, J. E. Chem. Rev. 2006, 106, 5028−5048. (b) Miao,
Q. Adv. Mater. 2014, 26, 5541−5549.
(12) (a) Sun, Z.; Zeng, Z.; Wu, J. Acc. Chem. Res. 2014, 47, 2582−
2591. (b) Li, Y.; Heng, W.-K.; Lee, B. S.; Aratani, N.; Zafra, J. L.; Bao,
́
N.; Lee, R.; Sung, Y. M.; Sun, Z.; Huang, K.-W.; Webster, R. D.; Lopez
Navarrete, J. T.; Kim, D.; Osuka, A.; Casado, J.; Ding, J.; Wu, J. J. Am.
Chem. Soc. 2012, 134, 14913−14922. (c) Sun, Z.; Lee, S.; Park, K.;
Zhu, X.; Zhang, W.; Zheng, B.; Hu, P.; Zeng, Z.; Das, S.; Li, Y.; Chi,
C.; Li, R.; Huang, K.; Ding, J.; Kim, D.; Wu, J. J. Am. Chem. Soc. 2013,
135, 18229−18236.
(13) (a) Li, J.; Zhang, K.; Zhang, X.; Huang, K.-W.; Chi, C.; Wu, J. J.
Org. Chem. 2010, 75, 856−863. (b) Li, J.; Jiao, C.; Huang, K.-W.; Wu,
J. Chem. - Eur. J. 2011, 17, 14672−14680.
ASSOCIATED CONTENT
■
(14) For indeno[1,2-b]fluorene and derivatives, see: (a) Chase, D. T.;
Rose, B. D.; McClintock, S. P.; Zakharov, L. N.; Haley, M. M. Angew.
Chem., Int. Ed. 2011, 50, 1127−1130. (b) Chase, D. T.; Fix, A. G.;
Rose, B. D.; Weber, C. D.; Nobusue, S.; Stockwell, C. E.; Zakharov, L.
N.; Lonergan, M. C.; Haley, M. M. Angew. Chem., Int. Ed. 2011, 50,
11103−11106. (c) Chase, D. T.; Fix, A. G.; Kang, S. J.; Rose, B. T.;
Weber, C. D.; Zhong, Y.; Zakharov, L. V.; Lonergan, M. C.; Nuckolls,
C.; Haley, M. M. J. Am. Chem. Soc. 2012, 134, 10349−10352.
(d) Frederickson, C. K.; Zakharov, L. N.; Haley, M. H. J. Am. Chem.
Soc. 2016, 138, 16827−16838.
S
* Supporting Information
The Supporting Information is available free of charge on the
NMR and IR spectra of compounds 1b, 4a, and 4b and
Cartesian coordinates of DFT-calculated structures
AUTHOR INFORMATION
■
(15) For indeno[2,1-c]fluorene, see: Fix, A. G.; Deal, P. E.; Vonnegut,
C. L.; Rose, B. D.; Zakharov, L. N.; Haley, M. M. Org. Lett. 2013, 15,
1362−1365.
Corresponding Author
E
J. Org. Chem. XXXX, XXX, XXX−XXX