102
R.P. Nair et al. / Inorganica Chimica Acta 380 (2012) 96–103
Fig. 6. Thermal ellipsoid (50% probability) representation of the RR diastereomer of 19 with the atomic numbering scheme, both the RR and SS enantiomers are present in the
structure.
of Cp⁄Ru(PTA)(PPh3)Cl (1) and Cp⁄Ru(PMe3)(PPh3)Cl (2) were com-
parable to that of Cp⁄Ru(PPh3)2Cl (3), which is the current standard
in Kharasch chemistry.
Acknowledgments
We gratefully acknowledge financial support from the National
Science Foundation CAREER Program (NSF CHE-0645365). Finan-
cial support from the NSF is also acknowledged for X-ray (CHE-
0226402) and NMR (CHE-0521191) facilities.
Appendix A. Supplementary material
CCDC 830022 and 830023 contain the supplementary crystallo-
graphic data for 19 and 20. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
ated with this article can be found, in the online version, at
Fig. 7. Thermal ellipsoid (50% probability) representation of the SS diastereomer of
20 with the atomic numbering scheme, hydrogen atoms have been omitted for
clarity, both the RR and SS enantiomers are present in the structure.
References
[1] (a) M.S. Kharasch, H. Engelmann, F.R. Mayo, J. Org. Chem. 2 (1938) 288;
(b) M.S. Kharasch, E.V. Jensen, W.H. Urry, Science 102 (1945) 128;
(c) M.S. Kharasch, E.V. Elwood, W.H. Urry, J. Am. Chem. Soc. 69 (1947) 1100.
[2] F. Minisci, Acc. Chem. Res. 8 (1975) 165.
3.2. Structures of addition products 19 and 20
[3] D. Belluš, Pure Appl. Chem. 57 (1985) 1827.
The solid-state structures of 19 and 20 were determined by
X-ray crystallography. Crystals suitable for X-ray diffraction were
obtained by slow evaporation of hexane solutions of 19 and 20.
Thermal ellipsoid representations of 19 and 20 are depicted in
Figs. 6 and 7, respectively, along with atomic numbering schemes.
The regioselectivity of CCl4 addition to chalcone is confirmed from
the structure of 19. As expected, Cl atom is bonded to the benzylic
carbon. The structure of major diastereomer of the chalcone–CCl4
adduct is shown in Fig. 6. The figure contains only the RR configu-
ration; however, the crystals are racemic with both RR and SS
enantiomers present. In the case of cis-stilbene–CCl4 adduct, the
structure of major diastereomer with (SS)-configuration is depicted
in Fig. 7, both the SS and RR enantiomers are present in the crystal.
[4] J. Iqbal, B. Bhatia, N.K. Nayyar, Chem. Rev. 94 (1994) 519.
[5] R.A. Gossage, L.A. van de Kuil, G. van Koten, Acc. Chem. Res. 31 (1998) 423.
[6] For selected examples see: (a) L.A. van de Kuil, D.M. Grove, R.A. Gossage, J.W.
Zwikker, L.W. Jenneskens, W. Drenth, G. van Koten, Organometallics 16 (1997)
4985;
(b) A.W. Kleij, R.A. Gossage, R.J.M. Klein Gebbink, N. Brinkmann, E.J. Reijerse, U.
Kragl, M. Lutz, A.L. Spek, G. van Koten, J. Am. Chem. Soc. 122 (2000) 12112;
(c) V. Pandarus, D. Zargarian, Organometallics 26 (2007) 4321.
[7] For excellent reviews on Cu catalyzed ATRA, see: (a) T. Pintauer, K.
Matyjaszewski, Chem. Soc. Rev. 37 (2008) 1087;
(b) T. Pintauer, Eur. J. Inorg. Chem. (2010) 2449.
[8] For selected examples see: (a) J.M. Muñoz-Molina, T.R. Belderraín, P.J. Pérez,
Adv. Synth. Catal. 350 (2008) 2365;
(b) W.T. Eckenhoff, S.T. Garrity, T. Pintauer, Eur. J. Inorg. Chem. (2008) 563;
(c) W.T. Eckenhoff, T. Pintauer, Inorg. Chem. 46 (2007) 5844;
(d) J.M. Muñoz-Molina, A. Caballero, M.M. Díaz-Requejo, S. Trofimenko, T.R.
Belderraín, P.J. Pérez, Inorg. Chem. 46 (2007) 7725;
(e) W.T. Eckenhoff, T. Pintauer, Catal. Rev. 52 (2010) 1;
(f) J.M. Muñoz-Molina, W.M.C. Sameera, E. Alvarez, F. Maseras, T.R. Belderraín,
P.J. Pérez, Inorg. Chem. 50 (2011) 2458.
4. Conclusion
[9] For a review on Ru catalyzed ATRA, see: K. Severin, Curr. Org. Chem. 10 (2006)
217.
[10] (a) L. Quebatte, R. Scopelliti, K. Severin, Angew. Chem., Int. Ed. 43 (2004) 1520;
(b) L. Quebatte, E. Solari, R. Scopelliti, K. Severin, Organometallics 24 (2005)
1404;
In summary, we have presented here the activity of readily
available and air-stable ruthenium mixed-phosphine complexes
bearing PTA or PMe3 ligands in the ATRA of chlorinated esters
and carbon tetrachloride to a variety of olefins. The rate of addition
of CCl3CO2Et was observed to be much faster than that of
CH2ClCO2Et. The olefinic substrates employed in this study proved
to be less reactive than styrene regardless of the catalytic system.
Excess phosphine (PPh3) plays both a promotive and inhibitory
role in catalysis, which is not completely understood. The activities
(c) L. Quebatte, R. Scopelliti, K. Severin, Eur. J. Inorg. Chem. (2005) 3353;
(d) K. Thommes, M.A. Fernández-Zúmel, C. Buron, A. Godinat, R. Scopelliti, K.
Severin, Eur. J. Org. Chem. 2 (2011) 249;
(e) M.A. Fernández-Zúmel, K. Gregor, K. Thommes, R. Scopelliti, K. Severin, Eur.
J. Inorg. Chem. 23 (2010) 3596.
[11] E. Mume, I.J. Munslow, K. Kallstrom, P.G. Andersson, Collect. Czech. Chem.
Commun. 72 (2007) 1005.