Journal of the American Chemical Society
Article
(2) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem.
(34) Tang, F.; Chen, C.; Moeller, K. Synthesis 2007, 3411−3420.
̈
(35) Grandjean, J.-M. M.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2013,
52, 3967−3971.
Rev. 2008, 108, 3795−3892.
(3) Hintermann, L. In C-X Bond Formation; Vigalok, A., Ed.; Topics in
Organometallic Chemistry; Springer: Berlin Heidelberg, 2010; pp 123−
155.
(36) Zeller, M. A.; Riener, M.; Nicewicz, D. A. Org. Lett. 2014, 16,
4810−4813.
(37) Mizuno, K.; Tamai, T.; Nishiyama, T.; Tani, K.; Sawasaki, M.;
Otsuji, Y. Angew. Chem., Int. Ed. Engl. 1994, 33, 2113−2115.
(38) Asaoka, S.; Kitazawa, T.; Wada, T.; Inoue, Y. J. Am. Chem. Soc.
1999, 121, 8486−8498.
(39) Asaoka, S.; Wada, T.; Inoue, Y. J. Am. Chem. Soc. 2003, 125,
3008−3027.
(40) Nishiyama, Y.; Kaneda, M.; Saito, R.; Mori, T.; Wada, T.; Inoue, Y.
J. Am. Chem. Soc. 2004, 126, 6568−6569.
(41) Nishiyama, Y.; Kaneda, M.; Asaoka, S.; Saito, R.; Mori, T.; Wada,
T.; Inoue, Y. J. Phys. Chem. A 2007, 111, 13432−13440.
(42) Nishiyama, Y.; Wada, T.; Asaoka, S.; Mori, T.; McCarty, T. A.;
Kraut, N. D.; Bright, F. V.; Inoue, Y. J. Am. Chem. Soc. 2008, 130, 7526−
7527.
(43) Fukuhara, G.; Mori, T.; Inoue, Y. J. Org. Chem. 2009, 74, 6714−
6727.
(44) Larsen, A. G.; Holm, A. H.; Roberson, M.; Daasbjerg, K. J. Am.
Chem. Soc. 2001, 123, 1723−1729.
(45) Griesbeck, A. G.; Cho, M. Org. Lett. 2007, 9, 611−613.
(46) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; 3rd ed.;
Springer: New York, 2006.
(47) Compare with a lifetime of 6.0 ns as measured by Verhoeven with
the PF6− salt. We also measured the fluorescence lifetime of Mes-AcrBF4
in MeCN to be 7.3 ns. These values are reasonably consistent with the
fluorescence lifetimes reported by Verhoeven, et al.26
(48) Kavarnos, G. J.; Turro, N. J. Chem. Rev. 1986, 86, 401−449.
(49) The diffusion limiting rate in DCE is estimated by the modified
(4) Utsunomiya, M.; Kuwano, R.; Kawatsura, M.; Hartwig, J. F. J. Am.
Chem. Soc. 2003, 125, 5608−5609.
(5) Utsunomiya, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 2702−
2703.
(6) Dong, G.; Teo, P.; Wickens, Z. K.; Grubbs, R. H. Science 2011, 333,
1609−1612.
(7) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012, 134,
18577−18580.
(8) Perkowski, A. J.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135,
10334−10337.
(9) Nguyen, T. M.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135, 9588−
9591.
(10) Nguyen, T. M.; Manohar, N.; Nicewicz, D. A. Angew. Chem., Int.
Ed. 2014, 53, 6198−6201.
(11) Wilger, D. J.; Grandjean, J.-M. M.; Lammert, T. R.; Nicewicz, D.
A. Nat. Chem. 2014, 6, 720−726.
(12) Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A. Chem. Sci. 2013, 4,
3160−3165.
(13) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
113, 5322−5363.
(14) Fukuzumi, S.; Ohkubo, K.; Suenobu, T. Acc. Chem. Res. 2014, 47,
1455−1464.
(15) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.;
Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600−1601.
(16) Kotani, H.; Ohkubo, K.; Fukuzumi, S. J. Am. Chem. Soc. 2004, 126,
15999−16006.
(17) Hasobe, T.; Hattori, S.; Kotani, H.; Ohkubo, K.; Hosomizu, K.;
Imahori, H.; Kamat, P. V.; Fukuzumi, S. Org. Lett. 2004, 6, 3103−3106.
(18) Ohkubo, K.; Kotani, H.; Fukuzumi, S. Chem. Commun. 2005,
4520−4522.
Debye equation ( Backstrom, H. L. J.; Sandros, K.; Lindgren, J.-E.;
̈
̈
Varde, E.; Westin, G. Acta Chem. Scand. 1960, 14, 48−62. ) of the form:
kdif = 2RT(2 + r1/r2 + r2/r1)/3000η where R = universal gas constant; T
= 298 K; r1 and r2 are the collisional radii of the acridinium and quencher,
respectively; η (viscosity of DCE at 298 K) = 0.779 mPa·s ( Haynes, W.
M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics;
CRC Press: Boca Raton, FL; London; New York, 2013.); r1/r2 is
estimated to be roughly 2, returning a value of ∼9.5 × 109 s−1.
(50) Kuruvilla, E.; Ramaiah, D. J. Phys. Chem. B 2007, 111, 6549−6556.
(51) Kuruvilla and Ramaiah (ref 50) report that the iodide salt of Xyl-
Acr+ possesses a CT-singlet state in an aqueous buffer, exhibiting a
contracted fluorescence lifetime (τ = 3.6 ns) compared the value
measured in DCE in our hands (τ = 17 ns).
(19) Ohkubo, K.; Nanjo, T.; Fukuzumi, S. Bull. Chem. Soc. Jpn. 2006,
79, 1489−1500.
(20) Fukuzumi, S. Pure Appl. Chem. 2007, 79, 981−991.
(21) Ohkubo, K.; Iwata, R.; Yanagimoto, T.; Fukuzumi, S. Chem.
Commun. 2007, 3139−3141.
(22) Fukuzumi, S.; Kotani, H.; Ohkubo, K. Phys. Chem. Chem. Phys.
2008, 10, 5159−5162.
(23) Ohkubo, K.; Mizushima, K.; Iwata, R.; Souma, K.; Suzuki, N.;
Fukuzumi, S. Chem. Commun. 2010, 46, 601−603.
(24) Ohkubo, K.; Fujimoto, A.; Fukuzumi, S. Chem. Commun. 2011,
47, 8515−8517.
(52) Jones, G., II; Farahat, M. S.; Greenfield, S. R.; Gosztola, D. J.;
Wasielewski, M. R. Chem. Phys. Lett. 1994, 229, 40−46.
(53) Van Willigen, H.; Jones, G.; Farahat, M. S. J. Phys. Chem. 1996,
100, 3312−3316.
(54) Andrews, L.; Harvey, J. A.; Kelsall, B. J.; Duffey, D. C. J. Am. Chem.
Soc. 1981, 103, 6415−6422.
(55) Johnston, L. J.; Schepp, N. P. J. Am. Chem. Soc. 1993, 115, 6564−
6571.
(56) Schepp, N. P.; Johnston, L. J. J. Am. Chem. Soc. 1994, 116, 6895−
6903.
(57) Johnston, L. J.; Schepp, N. P. Pure Appl. Chem. 1995, 67, 71−78.
(58) Schepp, N. P.; Johnston, L. J. J. Am. Chem. Soc. 1996, 118, 2872−
2881.
(25) Hoshino, M.; Uekusa, H.; Tomita, A.; Koshihara, S.; Sato, T.;
Nozawa, S.; Adachi, S.; Ohkubo, K.; Kotani, H.; Fukuzumi, S. J. Am.
Chem. Soc. 2012, 134, 4569−4572.
(26) Benniston, A. C.; Harriman, A.; Li, P.; Rostron, J. P.; van
Ramesdonk, H. J.; Groeneveld, M. M.; Zhang, H.; Verhoeven, J. W. J.
Am. Chem. Soc. 2005, 127, 16054−16064.
(27) Benniston, A. C.; Harriman, A.; Li, P.; Rostron, J. P.; Verhoeven, J.
W. Chem. Commun. 2005, 2701−2703.
(28) Verhoeven, J. W.; van Ramesdonk, H. J.; Zhang, H.; Groeneveld,
M. M.; Benniston, A. C.; Harriman, A. Int. J. Photoenergy 2005, 7, 103−
108.
(29) Benniston, A. C.; Harriman, A.; Verhoeven, J. W. Phys. Chem.
(59) Schepp, N. P.; Shukla, D.; Sarker, H.; Bauld, N. L.; Johnston, L. J.
Chem. Phys. 2008, 10, 5156−5156.
−
J. Am. Chem. Soc. 1997, 119, 10325−10334.
(60) Shida, T. Electronic Absorption Spectra of Radical Ions; Elsevier:
Amsterdam, 1988.
(61) This is in good agreement with values published by Johnston and
Schepp on the rate of nucleophilic addition to substituted styrene cation
radicals by various nucleophiles (ref 55). Addition of alcohols to β-
methylstyrene takes place with second order rate constants ranging from
1.0 × 106 to 1.1 × 107 M−1 s−1. One would expect the intramolecular
addition to occur even faster.
(30) The tetrafluoroborate (BF4 ) salt was employed in all studies
herein; “Mes-Acr+” will be used synonymous to the 9-mesityl-10-
methylacridinum cation when the counter-anion is irrelevant. Previous
studies indicate that the mesityl-acridinium salts of non-coordinating
−
−
anions (e.g. PF6 , ClO4 ) exhibit indistinguishable photophysical
behavior (ref 26).
(31) Campbell, J. M.; Xu, H.-C.; Moeller, K. D. J. Am. Chem. Soc. 2012,
134, 18338−18344.
(32) Smith, J. A.; Moeller, K. D. Org. Lett. 2013, 15, 5818−5821.
(33) Huang, Y.; Moeller, K. D. Tetrahedron 2006, 62, 6536−6550.
(62) Rosokha, S. V.; Kochi, J. K. Acc. Chem. Res. 2008, 41, 641−653.
K
dx.doi.org/10.1021/ja506228u | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX