nm (the wavelength for the 5% cutoff transmittance 459 nm plus the transmittance edge 19 nm), which makes it excellent for UV and
blue light shielding. The adjusting of Cl/Br ratio of the nanocrystals allows for the control of light blocking range, making the EC-
CsPb(Cl/Br)
3
films suitable for various optical applications, such as light blocking and optical filters. The EC-CsPbBr shows
3
transmittance of 5% at 498 nm, however, with a broad transmittance edge of 88 nm, indicating the reduced performance for the finely
control of blocking range.
Photostability is one of the most important issues in real application of light blocking materials, and the degradation of the lead
halide perovskite is considered as a critical issue in various applications [30-34]. In this point of view, the stability of the film is highly
demanded to be evaluated. The UV-vis transmittance spectra before and after under 6 days UV exposure under ambient environment is
shown in Fig. S2 (Supporting information), and it is clearly show that the stability of the film is quite well, which might be benefit
from to the excellent photostability of the CsPbCl2.5Br0.5 [23] and the protection of EC matrix.
In summary, we report a CsPb(Cl/Br) nanocrystals based UV and blue light blocking material. The perovskite nanocrystals retained
3
their photochemical and physical properties during the fabricating process, and the light blocking range is tunable by changing the
Cl/Br ratio. The materials show high transparency beyond the blue light range (> 95%), which offer the great advantage in various
applications.
Acknowledgment
This research was financially supported by the National Nature Scientific Foundation of China (No. 21675133) and OESACLS201902,
which are gratefully acknowledged.
References
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
1] J. Wu, S. Seregard, P.V. Algvere, Surv. Ophthalmol. 51 (2006) 461-481.
2] R. Sarkany, Medicine 45 (2017) 444-447.
3] A.R. Young, J. Claveau, A.B. Rossi, J. Am. Acad. Dermatol. 76 (2017) S100-S109.
4] P.V. Algvere, J. Marshall, S. Seregard, Acta Ophthalmol. Scand. 84 (2006) 4-15.
5] Z. Yu, S. Qiu, X. Chen, et al., Neuroscience 270 (2014) 158-167.
6] T. Ueda, T. Nakanishi-Ueda, H. Yasuhara, R. Koide, W.W. Dawson, Exp. Eye Res. 89 (2009) 863-868.
7] I. Jaadane, P. Boulenguez, S. Chahory, et al., Free Radical Bio. Med. 84 (2015) 373-384.
8] C.B. Dipl-Biol, M. Schulz, T. Laube, J. Cataract Refr. Surg. 34 (2008) 1161-1166.
9] C. Han, F. Wang, C. Gao, et al., J. Mater. Chem. C 3 (2015) 5065-5072.
10] L. Wallenhorst, L. Gurău, A. Gellerich, et al., Appl. Surf. Sci. 434 (2018) 1183-1192.
11] X. Wu, J. Wang, G. Zhang, et al., Appl. Catal. B-Environ. 201 (2017) 128-136.
12] J.Y. Huang, S.H. Li, M.Z. Ge, et al., J. Mater. Chem. A 3 (2015) 2825-2832.
13] X. Li, J. Wang, Z. Hu, M. Li, K. Ogino, Chin. Chem. Lett. 29 (2018) 166-170.
14] H.Y. Wang, Y. Yang, X. Li, L.J. Li, C. Wang, Chin. Chem. Lett. 21 (2010) 1119-1123.
15] S. Xie, J. Zhao, B. Zhang, et al., ACS Appl. Mater. Interfaces 7 (2015) 17558-17564.
16] B. Xue, Z. Zhang, Y. Sun, et al., Carbohyd. Polym. 186 (2018) 176-183.
17] M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8 (2014) 506-514.
18] F. Zheng, D. Saldana-Greco, S. Liu, A.M. Rappe, J. Phys. Chem. Lett. 6 (2015) 4862-4872.
19] G.L. Yang, H.Z. Zhong, Chin. Chem. Lett. 27 (2016) 1124-1130.
20] L.C. Schmidt, A. Pertegas, S. Gonzalez-Carrero, et al., J. Am. Chem. Soc. 136 (2014) 850-853.
21] F. Zhang, H. Zhong, C. Chen, et al., ACS Nano 9 (2015) 4533-4542.
22] L. Protesescu, S. Yakunin, M.I. Bodnarchuk, et al., Nano Lett. 15 (2015) 3692-3696.
23] A. Swarnkar, R. Chulliyil, V.K. Ravi, et al., Angew. Chem. Int. Ed. 54 (2015) 15424-15428.
24] Y. Wang, X. Li, J. Song, et al., Adv. Mater. 27 (2015) 7101-7108.
25] J. Song, J. Li, X. Li, et al., Adv. Mater. 27 (2015) 7162-7167.
26] Y. Wang, X. Li, X. Zhao, et al., Nano Lett. 16 (2016) 448-453.
27] S. Yakunin, L. Protesescu, F. Krieg, et al., Nat. Commun. 6 (2015) 8056.
28] Q.A. Akkerman, V. D'Innocenzo, S. Accornero, et al., J. Am. Chem. Soc. 137 (2015) 10276-10281.
29] G. Nedelcu, L. Protesescu, S. Yakunin, et al., Nano Lett. 15 (2015) 5635-5640.
30] F. Palazon, Q.A. Akkerman, M. Prato, L. Manna, ACS Nano 10 (2016) 1224-1230.
31] G. Grancini, V. D'Innocenzo, E.R. Dohner, et al., Chem. Sci. 6 (2015) 7305-7310.
32] J.F. Galisteo-Lopez, M. Anaya, M.E. Calvo, H. Miguez, J. Phys. Chem. Lett. 6 (2015) 2200-2205.
33] A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, et al., Chem. Mater. 27 (2015) 3397-3407.
34] G.E. Eperon, S.N. Habisreutinger, T. Leijtens, et al., ACS Nano 9 (2015) 9380-9393.