H.-L. Wu, B.-J. Uang / Tetrahedron: Asymmetry 13 (2002) 2625–2628
2627
Table 2. The effect of the ligand and concentration in catalytic asymmetric epoxidation of 7a to (2R,3R)-8a (Scheme 2)
Entry
Ligand
Conc. (M)
Time (h)
Yield (%)
Eea (%)
1
2
3
4
5
6
7
8
9a
9a
9a
9b
9c
9d
9e
9f
0.42
0.84
1
0.84
0.84
0.84
0.84
0.84
8
6
5
5
3
9
12
6
60
85
90
89
86
88
89
85
60
70
65
70
75
73
89
25
a See refs. 7 and 8.
In conclusion, we have achieved moderate to high
enantioselectivities in the vanadium-catalyzed asymmet-
ric epoxidation of allylic alcohols employing readily
accessible new chiral hydroxamic acids with diverse
structural features as ligands for the vanadium catalyst.
The origin of the reversal in the sense of asymmetric
induction by ligands 6 and 9, which possess the same
chiral (+)-ketopinic acid unit is not clear at this stage.
Interestingly, the observed trend in enantioselectivity
with the variation in size of the N-substituent of the
ligand in the present catalytic asymmetric epoxidation
is opposite to that of Yamamoto’s findings, although
further investigation is required. Further studies of this
methodology involving the modification of the bornane
skeleton to provide better selectivity are under active
exploration.
Acknowledgements
We thank the National Science Council, Republic of
China for the financial support.
References
Table 3. Asymmetric epoxidation of allylic alcohols 7a–h
to 8a–h using 9e as liganda
1. (a) Behrens, C. H.; Sharpless, K. B. Aldrichim. Acta 1983,
16, 67; (b) Rao, A. S. In Comprehensive Organic Synthesis;
Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 7, p. 357; (c) Jacobsen, E. N. In Catalytic Asymmetric
Synthesis; Ojima, I., Ed.; VCH: New York, 1993; p. 159;
(d) Katsuki, T. Coord. Chem. Rev. 1995, 140, 189; (e)
Katsuki, T. J. Mol. Catal. 1996, 113, 87; (f) Dalton, C. T.;
Ryan, K. M.; Wall, V. M.; Bousquet, C. D.; Gilheany, G.
Top. Catal. 1998, 5, 75; (g) Mun˜iz-Ferna´ndez, K.; Bolm,
C. In Transition Metals for Organic Synthesis; Beller, M.;
Bolm, C., Eds.; VCH-Wiley: Weinheim, 2000; Vol. 2, p.
271; (h) Katsuki, T. In Comprehensive Asymmetric Cataly-
sis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.;
Springer: Berlin, 1999; Vol. 2, p. 621; (i) Ito, Y. N.;
Katsuki, T. Bull. Chem. Soc. Jpn. 1999, 72, 603.
2. (a) Michaelson, R. C.; Palermo, R. E.; Sharpless, K. B. J.
Am. Chem. Soc. 1977, 99, 1990; (b) Vanadium complex
bearing proline-based chiral hydroxamic acid provided
80% ee, see: Sharpless, K. B.; Verhoeven, T. R. Aldrichim.
Acta 1979, 12, 63.
3. Murase, N.; Hoshino, Y.; Oishi, M.; Yamamoto, H. J.
Org. Chem. 1999, 64, 338.
4. (a) Luong, T. K. K.; Harms, K.; Bolm, C. Chem Ber./Recl.
1997, 130, 887; (b) Ku¨hn, T.; Bolm, C. Synlett 2000, 6,
899; (c) More recently chiral hydroperoxides were used as
oxidant in asymmetric oxidations, see: Bolm, C.; Beck-
mann, O.; Ku¨hn, T.; Palazzi, C.; Adam, W.; Rao, P. B.;
Saha-Mo¨ller, C. R. Tetrahedron: Asymmetry 2001, 12,
2441.
5. Hoshino, Y.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122,
10452.
6. (a) Hwang, D.-R.; Chu, C.-Y.; Wang, S.-K.; Uang, B.-J.
Synlett 1999, 1, 77; (b) Hwang, D.-R.; Chen, C.-P.; Uang,
B.-J. Chem. Commun. 1999, 1207; (c) Chu, C.-Y.; Hwang,