H. Firouzabadi et al. / Journal of Molecular Catalysis A: Chemical 348 (2011) 94–99
99
Table 4
[7] (a) R. Bedford, C.S.J. Cazin, M.B. Hursthose, M.E. Light, V.J.M. Scordia, Dalton
Trans. (2004) 3864–3868;
Recycling of the Pd-supported agarose hydrogel catalyst for homocoupling reaction
of 4-iodoanisole in water at 90 ◦C using NaOH as base
Pd(OAc)2, Agarose
(b) R. Bedford, C.S.J. Cazin, D. Holder, Coord. Chem. Rev. 248 (2004) 2283–2321;
(c) R.B. Bedford, Chem. Commun. 21 (2003) 1787–1796;
(d) U. Nettekoven, F. Naud, A. Schnyder, H.U. Blaser, Synlett (2004) 2549–2552.
[8] O. Navarro, N. Marion, Y. Oonishi, R.A. Kelly III, S.P. Nolan, J. Org. Chem. 71
(2006) 685–692.
[9] (a) V. Calò, A. Nacci, A. Monopoli, Eur. J. Org. Chem. 17 (2006) 3791–3802;
(b) C.C. Cassol, A.P. Umpierre, G. Machado, S.I. Wolke, J. Dupont, J. Am. Chem.
Soc. 127 (2005) 3298–3299;
I
OMe
MeO
OMe
.
NaOH, H2O
°
90 C
Run
Time (h)
Conversion % (GC)
(c) V. Calò, A. Nacci, A. Monopoli, F. Montigelli, J. Org. Chem. 70 (2005)
6040–6044;
(d) G.A. Grasa, M.S. Viciu, J. Huang, S.P. Nolan, J. Org. Chem. 66 (2001)
7729–7737;
1
2
3
4
1.5
2
2
100
100
100
100
3.5
(e) A. Corma, H. Garcia, A. Leyva, Tetrahedron 60 (2004) 8553–8560.
[10] N. Iranpoor, H. Firouzabadi, A. Tarassoli, M. Fereidoonnezhah, Bull. Chem. Soc.
Jpn. 83 (2010) 1367–1373.
[11] M. Kuroboshi, Y. Waki, H. Tanaka, J. Org. Chem. 68 (2003) 3938–3942.
[12] C. Liu, L. Jin, A. Lei, Synlett (2010) 2527–2536.
[13] A. Yanagisawa, H. Hibino, S. Habaue, Y. Hisada, H. Yamamoto, J. Org. Chem. 57
(1992) 6386–6387.
[14] B.C. Rann, P. Dutta, A. Sarkar, Tetrahedron Lett. 39 (1998) 9557–9558.
[15] Y.L. Hu, F. Li, G.L. Gu, M. Lu, Catal. Lett. 141 (2011) 467–473.
[16] (a) N.G. Willis, J. Guzman, Appl. Catal. A 339 (2008) 68–75;
(b) S. Carrettin, A. Corma, M. Lglesias, Appl. Catal. A 291 (2005) 247–252.
[17] A. Benameur, T. Boumoud, B. Boumoud, S. Rhouati, Eur. J. Org. Chem. 7 (2010)
1196–1199.
in water. The leaching amounts of Pd also show that the agarose
reaction media. The resulting dark agarose hydrogel mass obtained
after washing with diethyl ether was reused for another batch of
the reaction. This process was repeated for four runs. As shown
in Table 4, the catalytic activity of Pd-supported agarose hydrogel
catalyst has been preserved to some extent during the recycling
process.
[18] P. Anastas, M. Kirchhoff, Acc. Chem. Res. 35 (2002) 686–694.
[19] R.A. Sheldon, Chemtech 24 (1994) 38–47.
[20] C. Jimenez-Gonzalez, A.D. Curzons, D.J.C. Constable, V. Cunningham, Int. J. LCA
9 (2004) 114–121.
[21] (a) H. Firouzabadi, N. Iranpoor, M. Abbasi, Adv. Synth. Catal. 351 (2009)
755–766;
4. Conclusion
(b) H. Firouzabadi, N. Iranpoor, M. Gholinejad, Tetrahedron 65 (2009)
7079–7084;
(c) H. Firouzabadi, N. Iranpoor, A. Garzan, Adv. Synth. Catal. 347 (2005)
1925–1928;
(d) H. Firouzabadi, N. Iranpoor, A.A. Jafari, E. Riazymontazer, Adv. Synth. Catal.
348 (2006) 434–438;
(e) H. Firouzabadi, N. Iranpoor, F. Nowrouzi, Chem. Commun. (2005) 789–791;
(f) H. Firouzabadi, N. Iranpoor, A. Khoshnood, J. Mol. Catal. A: Chem. 274 (2007)
109–115;
(g) H. Firouzabadi, N. Iranpoor, M. Abbasi, Tetrahedron 65 (2009) 5293–5301;
(h) H. Firouzabadi, N. Iranpoor, M. Gholinejad, J. Mol. Catal. A 321 (2010)
110–116;
(i) H. Firouzabadi, N. Iranpoor, M. Gholinejad, Adv. Synth. Catal. 352 (2010)
119–124;
(j) H. Firouzabadi, N. Iranpoor, M. Gholinejad, J. Hoseini, Adv. Synth. Catal. 353
(2011) 125–132;
(k) H. Firouzabadi, N. Iranpoor, A. Ghaderi, M. Ghavami, S.J. Hoseini, Bull. Chem.
Soc. Jpn. 84 (2011) 100–109.
In this study, a new protocol for carbon–carbon bond formation
via homocoupling reaction of using different aryl halides includ-
ing aryl chlorides in the presence of Pd(OAc)2 as the pre-catalyst
and agarose hydrogel as a reductant, support and bioorganic lig-
and in water at the temperatures <100 ◦C is discussed. Agarose is a
naturally occurring polysaccharide, which is cheap, soluble in hot
water, nontoxic and degradable in nature. All these make agarose
hydrogel an attractive and a highly green material for conducting
useful carbon–carbon bond formation using versatile substrates as
reported in this article. In addition to the homocoupling reactions of
aryl halides, important high yielding homocoupling reactions of ˇ-
bromo styrene, phenylboronic acid and phenylacetylene using this
catalytic system have been conducted in the presence of this cata-
lyst. The protocol has been also applied for a large-scale operation
in which a high yield of the product was obtained. This catalyst is
also a recyclable system. The leaching of Pd species into the reaction
mixture was found to be rather small amounts <3.5%.
[22] (a) C.A. Fleckenstein, H. Plenio, Green Chem. 9 (2007) 1287–1291;
(b) C.A. Fleckenstein, H. Plenio, J. Org. Chem. 73 (2008) 3236–3244;
(c) B. Karimi, D. Elhamifar, J.H. Clark, A.J. Hunt, Chem. Eur. J. 16 (2010)
8047–8053;
(d) T. Nishikata, B.H. Lipshutz, J. Am. Chem. Soc. 131 (2009) 12103–12105;
(e) A. Krasovskiy, C. Duplais, B.H. Lipshutz, Org. Lett. 12 (2010) 4742–4744;
(f) C. Duplais, A. Krasovskiy, A. Wattenberg, B.H. Lipshutz, Chem. Commun. 46
(2010) 562–564;
Acknowledgments
(g) B.H. Lipshutz, T.B. Petersen, A.R. Abela, Org. Lett. 10 (2008) 1333–1336.
[23] M. Kurooshi, Y. Waki, H. Tanaka, J. Org. Chem. 68 (2003) 3938–3942.
[24] C. Araki, Bull. Chem. Soc. Jpn. 29 (1956) 543–544.
[25] C. Yang, S.P. Nolan, J. Org. Chem. 67 (2002) 591.
[26] (a) K.H. Shaughnessy, R.B. DeVasher, Curr. Org. Chem. 9 (2005) 585–604;
(b) K.H. Shaughnessy, Chem. Rev. 109 (2009) 643–710.
[27] G.W. Kabalka, L. Wang, R.M. Pagni, C.M. Hair, V. Namboodiri, Synthesis (2003)
217–222.
The authors are thankful to TWAS Chapter of Iran based at ISMO
and Shiraz University Research Council for their supports. F.K. is
also thankful to Arash Ghaderi and Yasaman Ahmadi for their tech-
nical assistance.
Appendix A. Supplementary data
[28] D.J. Koza, E. Carita, Synthesis (2002) 2183–2186.
[29] (a) S. Chen, J. Zhang, Y.H. Li, J. Wen, S.Q. Bian, X.Q. Yu, Tetrahedron Lett. 50
(2009) 6795–6797;
Supplementary data associated with this article can be found, in
(b) E.S. Yoo, J. Adv. Eng. Technol. (2009) 345–347.
[30] M.A. Ogliaruso, L.A. Shadoff, E.I. Becker, J. Org. Chem. 28 (1963) 2725–2728.
[31] S. Padmanabhau, K.V. Gavaskar, D.J. Triggle, Synth. Commun. 26 (1996)
3109–3113.
References
[32] G. Lunn, J. Org. Chem. 57 (1992) 6317.
[33] Y. Xie, G.K. Tan, Y.K. Yan, J.J. Vittal, S.Ch. Ng, T.S.A. Hor, J. Chem. Soc. Dalton
Trans. (1999) 773–779.
[1] V. Penalva, J. Hassan, L. Lavenot, C. Gozzi, M. Lemaire, Tetrahedron Lett. 39
(1998) 2559–2560.
[2] W.M. Seganish, M.E. Mowery, S. Riggleman, P. Deshong, Tetrahedron 61 (2005)
2117–2121.
[34] S.E. Denmark, M.H. Ober, Org. Lett. 5 (2003) 1357–1360.
[35] K. Yin, C. Li, J. Li, X. Jia, Appl. Organomet. Chem. 25 (2011) 16–20.
[3] H.S. He, C. Zhang, C.K.W. Ng, P.H. Toy, Tetrahedron 61 (2005) 12053–12057.
[4] N. Ma, Z. Duan, Y. Wu, J. Organomet. Chem. 691 (2006) 5709–5712.
[5] F. Ullman, Ber. Bunsen, Phys. Chem. 36 (1903) 2389.
[6] J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 102 (2002)
1359–1469.
[36] H. Firouzabadi, N. Iranpoor, A. Ghaderi, Org. Biomol. Chem.
865–871.
[37] R.A. Sheldon, M. Wallau, I.W.C.E. Arends, U. Schuchardt, Acc. Chem. Res. 31
(1998) 485–488.
9 (2011)