Page 3 of 3
ChemComm
DOI: 10.1039/C5CC01130B
In summary, based on the unique elimination reaction, we have
for the first time designed and synthesized a novel turnꢀon
fluorescent probe (HCyꢀOMeꢀBr) that can detect iodide rapidly
with high selectivity and sensitivity. The advantages of nearꢀ
infrared emission, large Stokes shift and low background
fluorescence make it a promising candidate probe for in vivo
imaging applications. We anticipate that this probe will be a
useful tool for clarifying iodide’s roles in various diseases and
cellular processes.
3
4
4
5
0
5
Fig. 5 (a) The time courses of the fluorescence intensities of 10
M HCyꢀOMeꢀBr with 300 ꢁM iodide (red line) and without
This work was supported by 973 Program (2013CB933800),
National Natural Science Foundation of China (21227005,
ꢁ
iodide (black line). (b) Cell viability of HCyꢀOMeꢀBr at different
concentrations.
2
1390411, 91313302, 21275092 and 21405098).
5
As confirming that HCyꢀOMeꢀBr could detect iodide under
physiological conditions, the application of the probe to track the
intracellular iodide level was investigated via scanning
microscopy. HepG2 cells were grown with DMEM (containing
Notes and references
a
College of Chemistry, Chemical Engineering and Materials Science,
Collaborative Innovation Center of Functionalized Probes for Chemical
1
1
2
0
5
0
10 % fetal bovine serum and antibiotics) for 24 h and used at 50 Imaging in Universities of Shandong, Key Laboratory of Molecular and
Nano Probes, Ministry of Education, Shandong Provincial Key
subconfluency. The cells were first washed with 10 mM HEPES
buffer, pH 7.4, then treated with 10 µM CyꢀOMeꢀBr for 30 min in
the same buffer at 37 °C and washed three times with buffer
Laboratory of Clean Production of Fine Chemicals, Shandong Normal
University, Jinan 250014, P. R. China
E-mail: tangb@sdnu.edu.cn
before imaging. As shown in Fig. 6a, apparent red fluorescence 55 † Electronic Supplementary Information (ESI) available: [Details of the
was observed in HepG2 cells treated with sodium iodide. In
contrast, in a control experiment, no significant fluorescence
appeared in HepG2 cells incubated with only the probe (Fig. 6d).
The brightꢀfield images confirmed that the cells were viable
throughout the imaging experiments (Fig. 6b, 6e). The
fluorescence imaging results were consistent with the
observations made in the titration experiments and demonstrated
that probe HCyꢀOMeꢀBr could readily detect the presence of
iodide in cells by the turnꢀon fluorescent method.
general experimental section; Synthesis of the intermediate products and
HCyꢀOMeꢀBr.]. See DOI: 10.1039/b000000x/
1
. R. R. Cavalieri, Thyroid 1997, 7, 177.
6
6
7
7
8
8
0
5
0
5
0
5
2. G. Dai, O. Levy, N. Carrasco, Nature 1996, 379, 458.
3. Baker, M. Nature, 2010, 463, 977ꢀ980.
4
. B. N. G. S. Giepmans, R. Adams, M. H. Elꢀlisman, and R. Y. Tsien,
Science, 2006, 312, 217.
. M. FernándezꢀSuárez and A. Y. Ting, Nat. Rev. Mol. Cell Biol., 2008,
5
9, 929.
6. W. Wang, H. Fang, L. Groom, A. Cheng, W. Zhang, J. Liu, X. Wang,
K. Li, P. Han, M. Zheng, J. Yin, W. Wang, M. P. Mattson, J. P. Y. Kao, E.
G. Lakatta, S.ꢀS. Sheu, K. Ouyang, J. Chen, R. T. Dirksen, and H. Cheng,
Cell, 2008, 134, 279.
7. H. A. Ho, M. Leclerc, J. Am. Chem. Soc. 2003, 125, 4412.
8
9
1
. N. Singh, D. O. Jang, Org. Lett. 2007, 9, 1991.
. D. Y. Lee, N. Singh, M. J. Kim, D. O. Jang, Org. Lett. 2011, 13, 3024.
0. A. Corma, M. S. Galletero, H. Garcia, E. Palomares, F. Rey, Chem.
Commun. 2002, 38, 1100.
11. M.Vetrichelvan, R. Nagarajan, S. Valiyaveettil, Macromolecules 2006,
3
1
1
1
9, 8303.
2. H. Li, C. Han, L. Zhang, J. Mater. Chem. 2008, 18, 4543.
3. L. G. Hepler, G. Olofsson, Chem. Rev. 1975, 75, 585.
4. C. K. Chiang, C. C. Huang, C. W. Liu, H. T. Chang, Anal. Chem.
2008, 80, 3716.
1
1
1
1
5. H. Wang, L. Xue, H. Jiang, Org. Lett. 2011, 13, 3844.
6. B. Ma, F. Zeng, F. Zheng, S. Wu, Chem. Eur. J. 2011, 17, 14844.
7. D. G. Cho, J. L. Sessler, Chem. Soc. Rev. 2009, 38, 1647.
8. M. E. Jun, B. Roy, K. H. Ahn, Chem. Commun. 2011, 47, 7583.
19. J. Du, M. Hu, J. Fan, X. Peng, Chem. Soc. Rev. 2012, 41, 4511.
20. J. Chan, S. C. Dodani, C. J. Chang, Nat. Chem. 2012, 4, 973.
2
5
2
9
1. C. S. Tsai Lee, I. M. Mathai, and S. I. Miller, J. Am.Chem. Soc., 1970,
2, 4602.
Fig. 6 Fluorescence and brightꢀfield images of HepG2 cells. (a)
Fluorescence image of cells pretreated with (30 ꢁM) sodium
22. S. Winstein, D. Pressman, W.G. Young, J. Am. Chem. Soc., 1939, 61,
iodide and then incubated with HCyꢀOMeꢀBr (10 ꢁM) for 30 min; 90 1645.
2
3. W.G. Lee, S.I. Miller, J. Phys. Chem., 1962, 66,655.
(b) Brightꢀfield image of cells shown in panel a; (c) overlay
3
0
image of (a) and (b); (d) Fluorescence image of cells incubated
only with HCyꢀOMeꢀBr (10 ꢁM) for 30 min; (e) Brightꢀfield
image of cells shown in panel d; (f) overlay image of (d) and (e).
95
Conclusions
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3