Bioconjugate Chemistry
Communication
chemoselective azo coupling could potentially bring forth a
photoswitchable functionality into proteins, where the photo-
switch can be activated by nonultraviolet light for which the
excitation wavelength can be tuned in accordance with the
diazonium compounds. Ongoing directions include the kinetic
study of the azo coupling reactions, the transformation of
several established procedures for selective tyrosine modifica-
of blomolecules in living systems. J. Am. Chem. Soc. 126, 15046−
1
5047.
(11) Beatty, K. E., Fisk, J. D., Smart, B. P., Lu, Y. Y., Szychowski, J.,
Hangauer, M. J., Baskin, J. M., Bertozzi, C. R., and Tirrell, D. A. (2010)
Live-cell imaging of cellular proteins by a strain-promoted azide-alkyne
cycloaddition. ChemBioChem 11, 2092−2095.
(12) Zhang, Z. W., Smith, B. A. C., Wang, L., Brock, A., Cho, C., and
Schultz, P. G. (2003) A new strategy for the site-specific modification
3
5−41
tions
into reactions that are specific for NpOH in proteins,
of proteins in vivo. Biochemistry 42, 6735−6746.
and immune tolerance study for varied azo adducts.
(13) Huang, Y., Wan, W., Russell, W. K., Pai, P. J., Wang, Z. Y.,
Russell, D. H., and Liu, W. S. (2010) Genetic incorporation of an
aliphatic keto-containing amino acid into proteins for their site-specific
modifications. Bioorg. Med. Chem. Lett. 20, 878−880.
ASSOCIATED CONTENT
Supporting Information
Experimental details about the directed evolution, protein
expression and purification, and the azo coupling reactions with
■
*
S
(
14) Hudak, J. E., Yu, H. H., and Bertozzi, C. R. (2011) Protein
glycoengineering enabled by the versatile synthesis of aminooxy
glycans and the genetically encoded aldehyde tag. J. Am. Chem. Soc.
1
(
(
33, 16127−16135.
15) Nguyen, D. P., Elliott, T., Holt, M., Muir, T. W., and Chin, J. W.
2011) Genetically encoded 1,2-aminothiols facilitate rapid and site-
AUTHOR INFORMATION
specific protein labeling via a bio-orthogonal cyanobenzothiazole
■
*
condensation. J. Am. Chem. Soc. 133, 11418−11421.
(16) Song, W., Wang, Y., Qu, J., Madden, M. M., and Lin, Q. (2008)
A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective
modification of tetrazole-containing proteins. Angew. Chem., Int. Ed.
47, 2832−2835.
Notes
The authors declare no competing financial interest.
(17) Kodama, K., Fukuzawa, S., Nakayama, H., Sakamoto, K., Kigawa,
T., Yabuki, T., Matsuda, N., Shirouzu, M., Takio, K., Yokoyama, S., and
Tachibana, K. (2007) Site-specific functionalization of proteins by
organopalladium reactions. ChemBioChem 8, 232−238.
ACKNOWLEDGMENTS
■
The authors are grateful for financial support from University of
California, Merced, for DNA sequencing service and mass
spectrometry service from UC Berkeley, and for materials from
Prof. Peter Schultz’s research group.
(
18) Brustad, E., Bushey, M. L., Lee, J. W., Groff, D., Liu, W., and
Schultz, P. G. (2008) A genetically encoded boronate-containing
amino acid. Angew. Chem., Int. Ed. 47, 8220−8223.
(19) Spicer, C. D., and Davis, B. G. (2011) Palladium-mediated site-
ABBREVIATIONS
selective Suzuki-Miyaura protein modification at genetically encoded
■
aryl halides. Chem. Commun. 47, 1698−1700.
NpOH, 2-amino-3-(6-hydroxy-2-naphthyl)propanoic acid; Tyr,
tyrosine; RS, aminoacyl tRNA synthetase; PEG, poly(ethylene
glycol)
(20) Li, N., Lim, R. K. V., Edwardraja, S., and Lin, Q. (2011) Copper-
free Sonogashira cross-coupling for functionalization of alkyne-
encoded proteins in aqueous medium and in bacterial cells. J. Am.
Chem. Soc. 133, 15316−15319.
REFERENCES
(21) Lang, K., Davis, L., Torres-Kolbus, J., Chou, C. J., Deiters, A.,
and Chin, J. W. (2012) Genetically encoded norbornene directs site-
specific cellular protein labelling via a rapid bioorthogonal reaction.
Nat. Chem. 4, 298−304.
■
(
1) Wang, L., and Schultz, P. G. (2005) Expanding the genetic code.
Angew. Chem., Int. Ed. 44, 34−66.
2) Liu, C. C., and Schultz, P. G. (2010) Adding new chemistries to
the genetic code. Annu. Rev. Biochem. 79, 413−444.
3) Saxon, E., and Bertozzi, C. R. (2000) Cell surface engineering by
a modified Staudinger reaction. Science 287, 2007−2010.
4) Kiick, K. L., Saxon, E., Tirrell, D. A., and Bertozzi, C. R. (2002)
(
(
22) Carrico, I. S. (2008) Chemoselective modification of proteins:
hitting the target. Chem. Soc. Rev. 37, 1423−1431.
23) Lim, R. K. V., and Lin, Q. (2010) Bioorthogonal chemistry:
recent progress and future directions. Chem. Commun. 46, 1589−1600.
24) Sletten, E. M., and Bertozzi, C. R. (2011) From mechanism to
mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 44, 666−
76.
25) Baker, M. C., Campbell, D. H., Epstein, S. I., and Singer, S. J.
1956) Physical chemical studies of soluble antigen-antibody
(
(
(
(
Incorporation of azides into recombinant proteins for chemoselective
modification by the Staudinger ligation. Proc. Natl. Acad. Sci. U.S.A. 99,
6
(
(
1
(
9−24.
5) Tsao, M. L., Tian, F., and Schultz, P. G. (2005) Selective
staudinger modification of proteins containing p-azidophenylalanine.
ChemBioChem 6, 2147−2149.
complexes. VII. Thermodynamics of the reaction between benzenear-
sonic acid-azo-bovine serum albumin and rabbit antibodies to
benzenearsonic acid. J. Am. Chem. Soc. 78, 312−316.
(26) Weigle, W. O. (1965) Induction of autoimmunity in rabbits
following injection of heterologous or altered homologous thyro-
globulin. J. Exp. Med. 121, 289−308.
(
6) Kolb, H. C., Finn, M. G., and Sharpless, K. B. (2001) Click
chemistry: diverse chemical function from a few good reactions.
Angew. Chem., Int. Ed. 40, 2004−2021.
(
7) Feng, T., Tsao, M. L., and Schultz, P. G. (2004) A phage display
system with unnatural amino acids. J. Am. Chem. Soc. 126, 15962−
5963.
8) Link, A. J., Vink, M. K. S., and Tirrell, D. A. (2004) Presentation
1
(
(27) Hooker, J. M., Kovacs, E. W., and Francis, M. B. (2004) Interior
surface modification of bacteriophage MS2. J. Am. Chem. Soc. 126,
3718−3719.
and detection of azide functionality in bacterial cell surface proteins. J.
Am. Chem. Soc. 126, 10598−10602.
(28) Schlick, T. L., Ding, Z. B., Kovacs, E. W., and Francis, M. B.
(2005) Dual-surface modification of the tobacco mosaic virus. J. Am.
Chem. Soc. 127, 3718−3723.
(29) Gavrilyuk, J., Ban, H., Nagano, M., Hakamata, W., and Barbas,
C. F., III (2012) Formylbenzene diazonium hexafluorophosphate
reagent for tyrosine-selective modification of proteins and the
introduction of a bioorthogonal aldehyde. Bioconjugate Chem. 23,
2321−2328.
(
9) Nguyen, D. P., Lusic, H., Neumann, H., Kapadnis, P. B., Deiters,
A., and Chin, J. W. (2009) Genetic encoding and labeling of aliphatic
azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA
synthetase/tRNA(CUA) pair and click chemistry. J. Am. Chem. Soc.
1
(
31, 8720−8721.
10) Agard, N. J., Prescher, J. A., and Bertozzi, C. R. (2004) A strain-
promoted [3 + 2] azide-alkyne cycloaddition for covalent modification
D
dx.doi.org/10.1021/bc400168u | Bioconjugate Chem. XXXX, XXX, XXX−XXX