(
)
=
k
(
[6] Mullisen,R. S., and Loehrke, R. I., A TransientHeatExchanger
Evaluation Testfor ArbitraryFluid InletTemperatureVariation
and Longitudinal Core Conduction, J. Heat Transfer, vol. 108,
Nu
Ntu
PL
PT
Pr
rh
Nusselt number D hdh
)
=
number of transfer units D h A mÇCp
longitudinal pitch, m
–
pp. 370 376, 1986.
transverse pitch, m
[7] Heggs, P. J., and Burns D., Single-Blow Experimental Pre-
diction of Heat Transfer Coef cients—A Comparison of Four
Commonly Used Techniques, Exp. Thermal Fluid Sci., vol. 1,
(
)
k
=
Prandtl number D Cp
(
)
=
hydraulic radius D dh 4 , m
–
pp. 243 251, 1988.
(
)
=
Re
s
Reynolds number D Gdh
[8] Stang, J. H., and Bush, J. E., The Periodic Method for Test-
transformed time variable in frequency
domain
ing Compact Heat Exchanger Surfaces, ASME J. Eng. Power,
–
vol. 96A, no. 2, pp. 87 94, 1974.
(
)
=
St
t
Stanton number D h GCp
[9] Roetzel, W., Luo, X., and Xuan, Y., Measurements of Heat
Transfer Coef cient and Axial Dispersion Coef cient Using
Temperature Oscillations, Exp. Thermal Fluid Sci., vol. 7,
time coordinate, s
Tm
Tg
Tg;i
Tg;in
To
temperature of the matrix, K
–
pp. 345 353, 1993.
(
)
temperature of the uid gas , K
gas inlet temperature to the packed bed, K
instantaneous inlet temperature, K
ambient temperature, K
[10] Le´veˆque, A., Les jois de la transmission de chaleur par con-
–
vection, Ann. Mines. Ser., vol. 12, no. 13, pp. 201 415, 1928.
[11] Martin,H., A TheoreticalApproach toPredictthe Performance
of Chevron-Type Plate Heat Exchanger, Chem. Eng. Process-
–
Tmin
minimum of the inlet temperature transient,
K
maximum of the inlet temperature transient,
K
instantaneous outlet temperature, K
distance coordinate along the axis, m
ing, vol. 35, pp. 301 310, 1996.
¨
[12] Schlunder, E. U., Analogy between Heat and Momentum
Transfer, Chem. Eng. Processing, vol. 37, pp. 103 107, 1998.
[13] Das, S. K., and Sahoo, R. K., Thermodynamic Optimization
of Regenerators, Cryogenics, vol. 31, pp. 862 868, 1991.
[14] Crump, K. S., Numerical Inversion of Laplace Transforms Us-
–
Tmax
–
Tg;out
x
xD
Xt
ing a Fourier Series Approximation, J. Assoc. Commer. Ma-
chinery, vol. 23, pp. 89 96, 1976.
–
(
)
(
=
dimensionless distance D x L
)
=
d
dimensionless transverse pitch D PT
(
z
dimensionless time D real time/residence
)
APPENDIX
time
p
pressure drop, N/m2
(
)
Special Functions
dimensionless charging time D Ntu
(
=
dimensionless charging time D mÇCpt
(
)
;
)
The special function Gn X Y known as the
MC
(
Anzelius-Schumann function is given by
dimensionless inlet temperature [D Tg;in
¡
in
) (
=
)
]
Tmin Tmax ¡ Tmin
dimensionless outlet temperature [D Tg;out
) (
1
)
Y (
nCrC1
X
(
out
¡XCY
(
)
;
Gn X Y D e
)
=
¡ Tmin Tmax ¡ Tmin
]
(
)
n C r C 1 !
rD0
viscosity of the uid, kg/ms
density, kg/m3
r
h
i
p
X
(
)
n C r ¡ p ! x
dimensionless distance D xD Ntu
for n ¸ 0
(
)
r ¡ p !
p!
pD0
REFERENCES
The Fn function can be expressed as
[1] Samdani, G., Fouhly, K., and Moore, S., Heat Exchanger: The
¡
¢
Fn D e¡Y
eY Gn
–
Next Wave, Chem. Eng., June, pp. 30 37, 1993.
Y
[2] Das, S. K., Advances in Heat Exchanger Technology, the
New Route, Proc. Workshop on Heat Exchangers, IIT Madras,
17 August 1996.
[3] Krat, D., Stehlik, P., Van der Prolog, H. J., and Bashir I. Master,
Helical Baf es in Shell and Tube Heat Exchanger, Part I: Ex-
However, it is easier to evaluate Fn from the recurrence
relations,
–
perimental Veri cation, Heat Transfer Eng., vol. 17, pp. 93
100, 1996.
(
)
(
)
(
)
;
;
;
Fn X Y D Gn X Y C Gn¡1 X Y
[4] Prasad, B. S. V., The Thermal Design and Rating of Multi-
;
For n D ¡1 Gn can be expressed as
(
)
stream Plate-Fin Heat Exchangers, in R. K. Shah ed. , Com-
pact Heat Exchangers for the Process Industries, pp. 79 100,
–
³
´ ³
´
1
Xr
Y r
X
Begell House, New York, 1997.
(
)
¡ XCY
(
)
;
G
X Y D e
¢
[5] Kays, W. M., and London, A. L., Compact Heat Exchangers,
3rd ed., McGraw-Hill, New York, 1984.
¡1
r!
r!
rD0
24
heattransfer engineering
vol. 22 no. 3 2001