which the electrophilicity of this site can be adapted to an
appropriate substrate to be oxidised, such as bromide; cf. Fig.
1.
Notes and references
‡ Crystal data: C15H21ClN3O11V, M = 505.74, monoclinic, space group
C2/c, a = 31.612(7), b = 7.1835(17), c = 21.290(16) Å, b = 123.274(4)°,
V = 4042.1(16) Å3, T = 293(2) K, Z = 8, m(Mo-Ka) = 0.69 mm21
.
Independent reflections 4382 (Rint = 0.0265), final R values [I > 2s(I0)] R1
=
=
suppdata/cc/b1/b101010g/for crystallographic data in .cif or other elec-
tronic format.
§ Additional hydrogen bonding contacts exist between the peroxo group
and the neighbouring pyridines of the ligand bpaH, viz. O1 and H12 (2.749
Å), and O2 and H6 (2.771 Å).
1 V. Conte, F. Di Furia and G. Licini, Appl. Catal., A, 1997, 157, 335.
2 F. Van der Velde, I. C. W. E. Arends and R. A. Sheldon, J. Inorg.
Biochem., 2000, 80, 81.
3 M. Bhattacharjee, S. Ganguly and J. Mukherjee, J. Chem. Res. (S), 1995,
80.
Fig. 2 Molecular structure of [VO(O2)bpaH]ClO4·2H2O at the 50%
probability level, including the hydrogen bonds (dashed lines). Selected
bond lengths (Å) and angles (°): V–O1 1.8734(16), V–O2 1.8827(16), V–
O3 1.5877(15), V–O4 2.2095(16), V–N1 2.132(2), V–N2 2.192(2), V–N3
2.133(2), O1–O2 1.422(2), C1–O4 1.222(3), C1–O5 1.302(3), O5–H5
0.8201(10); O1–V–N1 81.68(8), O1–V–O2 44.48(7), O2–V–N3 81.83(8),
N1–V–N2 75.53(7), N2–V–N 374.13(7), O3–V–O4 172.25(7). Hydrogen
bonds (Å): O1…H10C–O10 3.250, O2…H10C–O10 2.995, O2…H10D–
O10 2.806, O5–H5···O11 2.550, O11–H11B…O10 2.711, O11–H11A…O6
(perchlorate) 2.993.
4 M. J. Clague, N. L. Keder and A. Butler, Inorg. Chem., 1993, 32,
4754.
5 B. J. Hamstra, G. J. Colpas and V. L. Pecoraro, Inorg. Chem., 1998, 37,
949.
6 J. Mukherjee, S. Ganguly and M. Bhattacharjee, Indian. J. Chem., Sect.
A, 1996, 35, 471.
7 A. Butler and A. H. Baldwin, Struct. Bonding (Berlin), 1997, 89, 109.
8 A. Messerschmidt, L. Prade and R. Wever, Biol. Chem., 1997, 378,
309.
9 G. J. Colpas, B. J. Hamstra, J. W. Kampf and V. L. Pecoraro, J. Am.
Chem. Soc., 1996, 118, 3469.
10 V. Conte, O. Bortolini, M. Carraio and S. Moro, J. Inorg. Biochem.,
2000, 80, 41.
centre is displaced from this plane by 0.2163(8) Å towards the
oxo group. The unusual coordination mode of the carboxylic
acid function – through the doubly bonded oxygen O4 – has
been described previously for a number of dipicolinato
complexes of copper,20 iron21 and zinc22 with bond lengths
ranging from 2.3 to 2.5 Å (as compared to ca. 2.1 Å for the
corresponding bond lengths of deprotonated carboxylic acid
functions). The angle O3–V–O4, 172.25°, only slightly deviates
from linearity. The bond V–O4 [d = 2.2095(16) Å] is thus
surprisingly strong, even more as it is subject to the trans effect
exerted by the oxo group. It compares to the V–O (carboxylate)
distances of 2.144 and 2.045 Å for the carboxylato group trans
and cis to VNO, respectively, in [VO(L)H2O(O2)]2 (H2L =
carboxymethylhistidine),23 d[V–O (carboxylate)] = 2.138 Å
for the trans-standing carboxylate in [VO(O2)(bpg)],9 and d[V-
O(carboxylate)] between 2.01 and 2.04 Å in other peroxo-
vanadium complexes containing supporting ligands with cis-
standing carboxylato functions.24,25 The complex is the first
example of a cationic monoperoxo–oxovanadium complex with
an N3O donor set. Other cationic vanadium complexes which
have been described so far contain two NO donor sets
([VO(O2)(picolinamide)2]+),26 or one or two N2 sets ([VO(O2)-
(phen)(H2O)2]+;27 [VO(O2)L2]+, L = phen, bipy28).
ˆ
11 M. Casny´, D. Rehder, H. Schmidt, H. Vilter and V. Conte, J. Inorg.
Biochem., 2000, 80, 157.
12 (a) H. Szentivanyi and R. Stomberg, Acta Chem. Scand. Ser. A, 1984,
38, 101; (b) H. Minoun, P. Chaumette, M. Mignard, L. Saussine, J.
Fischer and R. Weiss, Nouv. J. Chim., 1983, 7, 467.
13 V. Suchá, M. Sivák, J. Tyrsˆelová and J. Marek, Polyhedron, 1997, 16,
2837.
14 A. F. Ghiro and R. C. Thomson, Inorg. Chem., 1990, 29, 4457.
15 B. I. Posner, R. Faure, J. W. Burgess, A. P. Bevan, D. Lachance, G.
Zhang-Sun, I. George Fantus, J. B. Ng, D. A. Hall, B. Soo Lum and A.
Shaver, J. Biol. Chem., 1994, 269, 4596.
16 D. Kostrewa, F. Grüninger-Leitch, C. D’Arcy, D. Mitchell and
A. P. G. M. Van Loon, Nat. Struct. Biol., 1997, 4, 185.
17 F. Van der Velde, L. Könemann, F. Van Rantwijk and R. A. Sheldon,
Chem. Commun., 1998, 189.
18 M. Weyand, H.-J. Hecht, M. Kieß, M.-F. Liaud, H. Vilter and D.
Schomburg, J. Mol. Biol., 1999, 293, 595.
19 D. D. Cox, S. J. Benkovic, L. M. Bloom, F. C. Bradley, M. J. Nelson,
L. Que, Jr. and D. E. Wallick, J. Am. Chem. Soc., 1988, 110, 2026.
20 M. Biagini-Cingi, A. Chiesi-Villa, C. Guastini and M. Nardelli, Gazz.
Chim. Ital., 1972, 102, 1026.
21 P. Laine, A. Gourdon and J.-P. Launay, Inorg. Chem., 1995, 34, 5138;
P. Laine, A. Gourdon, J.-P. Launay and J.-P. Tuchagues, Inorg. Chem.,
1995, 34, 5150.
The uncoordinated OH of the carboxylic acid group of
[VO(O2)(bpaH)]+ links a water of crystallisation (O11) via a
strong hydrogen bond of 2.550 Å, which in turn hydrogen binds
to the perchlorate anion and a second water of crystallisation,
O10. Two hydrogen bonds of weak to medium strength keep
this water in the proximity of the coordinated peroxo group.§
Although only O2 of the peroxide is involved in this H-bonding
network to a sizable extent, there are no significant differences
in the V–O (peroxide) bond lengths. Bonding parameters [d(V–
O1) 1.8734(16), d(V–O2) 1.8827(16) Å; angle O1–V–O2 =
44.48(7)°] are comparable to those in other peroxovanadium
complexes;9,13,23–25,29 the O–O bond length, 1.421(3), is in-
between the margins noted for [V2O2(O2)4H2O]22 13 and
22 K. Hakansson, M. Lindahl, G. Svensson and J. Albertsson, Acta Chem.
Scand., 1993, 47, 449.
23 K. Kanamori, K. Nishida, N. Miyata and K.-I. Okamoto, Chem. Lett.,
1998, 1267.
24 M. Kaliva, T. Giannadaki, C. P. Raptopoulos, A. Tzerzis and A.
Salifoglou, Inorg. Chem., in the press; M. Tsaramyrsi, D. Kavousanaki,
C . P. Raptopoulou, A. Terzis and T. Salifoglou, Inorg. Chim. Acta, in
press.
25 M. Sivák, V. Suchá, L. Kuchta and J. Marek, Polyhedron, 1999, 18, 93;
ˆ
L. Kuchta, M. Sivák, J. Marek, F. Pavelcˆik and M. Casny´, New J. Chem.,
1999, 43.
26 M. Sivák, M. Mad’arova, J. Marek and J. Benko, Chem. Listy, 2000, 94,
906.
27 V. K. Borzunov, V. S. Sergienko and M. A. Porai-Koshits, Koord.
Chimia, 1993, 19, 782.
28 V. S. Sergienko, V. K. Borzunov and M. A. Porai-Koshits, Zh. Neorg.
Khim., 1992, 37, 1062.
29 F. W. B. Einstein, R. J. Batchelor, S. J. Angus-Dunne and A. S. Tracey,
Inorg. Chem., 1996, 35, 1680.
30 M. Kosugi, S. Hikichi, M. Akita and Y. Moro-oka, J. Chem. Soc.,
Dalton Trans., 1999, 1369.
[VO(O2)(tp)(pz)] (tp
= tris(pyrazolyl)borate, pz = pyr-
azole).30
This special arrangement of carboxylic acid, water and
peroxide provides a basis for a mechanism for rapid – and
reversible – transfer of a proton to the activated (by coordination
to vanadium) peroxo function, and hence a mechanism by
922
Chem. Commun., 2001, 921–922