Y. Chai et al. / Bioorg. Med. Chem. Lett. 20 (2010) 5195–5198
5197
Table 1
In vitro antibacterial activity and the cytotoxicity of the target compounds 12–26
Strains
MIC (lg/mL)
CC50 (lg/mL)
Compound
R1
X
R2
S.a.
MRSA
8
S.e.
MRSE
0.25
S.p.
S.py.
E.f.
32
E.co.
K.p.
0.5
P.a.
S.s.
E.cl.
12
Me
N
0.5
1
32
8
0.5
8
1
4
176.78
13
14
15
Et
Me
Et
N
N
N
0.25
1
2
8
128
128
0.5
2
4
0.25
2
2
4
64
128
16
64
64
4
>128
>128
1
8
8
1
128
64
16
32
128
1
8
16
8
32
32
44.19
88.39
78.75
2,4-F2–C6H3
2,4-F2–C6H3
16
17
18
Me
Et
CF
0. 25
0.125
0.25
16
8
0.25
0.25
1
0.25
0.25
1
32
8
32
16
64
64
2
0. 5
2
64
2
16
16
32
1
2
4
4
16
8
88.39
62.5
CF
Me
COCHF2
32
128
128
4
4
88.39
19
20
21
22
23
Et
Me
Et
Me
Et
COCHF2
CF
CF
CF
CF
1
1
2
2
2
16
32
16
64
64
1
2
4
4
4
2
2
2
2
4
16
128
64
128
128
128
64
64
128
128
2
128
128
>128
128
8
8
16
8
8
64
16
64
64
64
64
128
64
16
8
32
16
64
16
32
128
64
44.19
314.98
78.75
314.98
157.49
CH2CH3
CH2CH3
CH2CH2F
CH2CH2F
16
128
64
24
25
Me
Et
COCH3
COCH3
0.5
2
16
4
4
1
2
64
16
64
32
8
8
8
64
16
8
2
32
157.49
19.69
128
128
16
32
128
26
Me
1
64
16
2
1
128
2
64
16
128
4
1
128
1
32
8
1
16
176.78
O
LVFX
0.125
0.25
0.125
0.5
0.25
0.125
>1000
S.a., Staphylococcus aureus ATCC 29213; MRSA, methicillin-resistant Staphylococcus aureus 08-52; S.e., Staphylococcus epidermidis ATCC 12228; MRSE, methicillin-resistant
Staphylococcus epidermidis 08-18; S.p., Streptococcus pneumoniae ATCC 49619; S.py., Streptococcus pyogenes 06-1; E.f., Enterococcus faecalis ATCC 29212; E.co., Escherichia coli
26; K.p., Klebsiella pneumoniae 7; P.a., Pseudomonas aeruginosa 17; S.s., Shigella sonnei 51592; E.cl., Enterobacter cloacae 45301.
sition of piperidine ring possessing an aminomethyl group in place
of the amino group of IMB reduces antibacterial activity, which is
contrary to our expected.
oxime-incorporated piperidino-substitutions were generally more
cytotoxic than the analogs containing methyloxime.
In summary, we report herein the synthesis of some novel 7-(4-
alkoxyimino-3-aminomethyl-3-methylpiperidin-1-yl) fluoroquin-
olone derivatives. The antibacterial activities of the newly synthe-
sized compounds were evaluated and correlated with their
physicochemical properties. Results reveal that all of the target
compounds have good activity against S. aureus and S. epidermidis
including MRSE, but most of them exhibit less activity than LVFX
against the remaining Gram-positive and Gram-negative strains.
Generally, the activity of the quinolone nuclei in this study are in
the order 1-cyclopropyl-1,8-naphthyridone ꢀ 1-cyclopropyl-8-fluo-
roquinolone > 1-cyclopropyl-8-methoxylquinolone ꢀ 1-cyclopropyl-
8-difluoromethoxylquinolone > levofloxacin nuclei ꢀ 1-(2,4-difluo-
rophenyl)-1,8-naphthyridone ꢀ 1-ethyl-8-fluoroquinolone > 1-(2-
fluoroethyl)-8-fluoroquinolone. In addition, fluoroquinolones
featuring methyloxime- incorporated piperidino-substitution at C-
7 position are comparable to analogs containing ethyloxime.
Some compounds were further examined for toxicity (CC50) in a
Acknowledgment
mammalian Vero cell line from 1000 to 7.81 lg/mL concentrations.
After 48 h of exposure, viability was assessed and the results are
reported in Table 1. Fifteen compounds when tested showed CC50
values ranging from 314.98 to 19.69 lg/mL. A comparison of the
The work was supported by the National S&T Major Special Pro-
ject on Major New Drug Innovation. Item No. 2009ZX09301-003.
substitution pattern at C-7 position demonstrated that ethyl-
References and notes
1. Hoshino, K.; Kitamura, A.; Morrissey, I.; Sato, K.; Kato, J.; Ikeda, H. Antimicrob.
Agents Chemother. 1994, 38, 2623.
2. Srivastava, B. K.; Solanki, M.; Mishra, B.; Soni, R.; Jayadev, S.; Valani, D.; Jain, M.;
Patel, P. R. Bioorg. Med. Chem. Lett. 2007, 17, 1924.
3. Bryskier, A.; Chantot, J. F. Drugs 1995, 49, 16.
4. Forroumadi, A.; Emami, S.; Mehni, M.; Moshafi, M. H.; Shafiee, A. Bioorg. Med.
Chem. Lett. 2005, 15, 4536.
5. Domagala, J. M. J. Antimicrob. Chemother. 1994, 33, 685.
6. Dang, Z.; Yang, Y. S.; Ji, R. Y.; Zhang, S. H. Bioorg. Med. Chem. Lett. 2007, 17, 4523.
7. Wang, X. Y.; Guo, Q.; Wang, Y. C.; Liu, B. Q.; Liu, M. L.; Sun, L. Y.; Guo, H. Y. Acta
Pharm Sin 2008, 43, 819.
8. Wang, J. X.; Guo, Q.; Chai, Y.; Feng, L. S.; Guo, H. Y.; Liu, M. L. Chin. Chem. Lett.
2010, 21, 55.
9. Chai, Y.; Wan, Z. L.; Wang, B.; Liu, M. L.; Guo, H. Y. Eur. J. Med. Chem. 2009, 44,
4063.
10. Zhang, Y. B.; Feng, L. S.; You, X. F.; Guo, Q.; Guo, H. Y.; Liu, M. L. Arch. Pharm.
Chem. Life Sci. 2010, 343, 143.
11. Suto, M. J.; Domagala, J. M.; Roland, G. E.; Mailloux, G. B.; Cohen, M. A. J. Med.
Chem. 1992, 35, 4745.
12. Yun, H. J.; Min, Y. H.; Lim, J. A.; Kang, J. W.; Kim, S. Y.; Kim, M. J.; Jeong, J. H.;
Choi, Y. J.; Kwon, H. J.; Jung, Y. H.; Shim, M. J.; Choi, E. C. Antimicrob. Agents
Chemother. 2002, 46, 3071.
13. MICs were determined by the agar dilution method as recommended by the
National Committee for Clinical Laboratory Standards. The MIC was defined as
the lowest concentration of each compound resulting in inhibition of visible
growth of bacteria after incubation at 35 °C for 18–24 h. The cytotoxicity was
tested in a mammalian Vero cell line and was assessed by CPE assay.
Figure 2. X-ray structure of 9a.