P. Cuadrado, A. M. Gonza´lez-Nogal / Tetrahedron Letters 42 (2001) 8993–8996
8995
5. Chong, J. M.; Mar, E. K. J. Org. Chem. 1992, 57, 46–49.
6. Lautens, M.; Delanghe, P. H. M.; Goh, J. B.; Zhang, C.
H. J. Org. Chem. 1995, 60, 4213–4227.
7. Cuadrado, P.; Gonza´lez-Nogal, A. M. Tetrahedron Lett.
1997, 38, 8117–8120.
8. Cuadrado, P.; Gonza´lez-Nogal, A. M. Tetrahedron Lett.
2000, 41, 1111–1114.
9. (a) Barbero, A.; Cuadrado, P.; Fleming, I.; Gonzalez-
Nogal, A. M.; Pulido, F. J. J. Chem. Soc., Chem. Com-
mun. 1992, 351–353; (b) Barbero, A.; Cuadrado, P.;
Fleming, I.; Gonza´lez-Nogal, A. M.; Pulido, F. J. J.
Chem. Soc., Perkin Trans. 1 1993, 1657–1662; (c) Bar-
bero, A.; Cuadrado, P.; Fleming, I.; Gonza´lez-Nogal, A.
M.; Pulido, F. J.; Sa´nchez, A. J. Chem. Soc., Perkin
Trans. 1 1995, 1525–1532.
10. (a) Barbero, A.; Cuadrado, P.; Fleming, I.; Gonza´lez-
Nogal, A. M.; Pulido, F. J. J. Chem. Soc., Chem. Com-
mun. 1990, 1030–1031; (b) Barbero, A.; Cuadrado, P.;
Fleming, I.; Gonza´lez-Nogal, A. M.; Pulido, F. J. J.
Chem. Soc., Perkin Trans. 1 1992, 327–331.
Scheme 6.
lated epoxides is dominated by the stannyl group. The
nucleophilic attack always takes place in the carbon
bearing the stannyl group and the evolution of the
resulting intermediate is also controlled and directed by
this group. In contrast to what was observed in the
reactions of epoxysilanes with lithium phenylsulfide,8
the lithium b-oxido stannanes 6f and 6g intermediates
containing also an a-alkoxy and b-alkoxysilane moiety
respectively, do not undergo Brook rearrangement or
Peterson-elimination. They afford the corresponding 1-
or 2-silylated vinylsulfide 3f and 3g resulting from
syn-elimination of HOSnBu3.
11. General procedure. To a stirred THF solution of lithium
phenylsulfide [prepared from benzenethiol (0.1 mL, 1
mmol) and butyllithium (0.625 mL, 1.6 M solution in
hexane, 1 mmol) in THF (5 mL) at −78°C under N2 for
10 min] was added dropwise a solution of epoxystannane
(1 mmol) in THF (5 mL). The resulting mixture was
allowed to warm up to 0°C for 1a–d and 1g or to room
temperature for 1e and 1f and stirred at these tempera-
tures until TLC indicated complete reaction. Ammonium
chloride solution was added and the mixture was
extracted with ether, washed with sodium hydroxide solu-
tion, dried (MgSO4) and chromatographed.
In conclusion, the opening of epoxystannanes with
lithium phenylsulfide is an easy method for preparing
new diastereomerically pure alcohols 2 bearing synthet-
ically versatile functionality in fixed regiospecific rela-
tionships. Furthermore, these erythro or threo
b-hydroxy stannanes undergo stereospecific syn or anti-
elimination of HOSnBu3. This has allowed us to pre-
pare Z or E vinyl sulfides.15 Especially interesting are
the 1- and 2-silylated vinylsulfides 3f–h which among
other applications,16–18 have been used for synthesizing
thiophenyl-functionalized cyclopentenones via Nazarov
cyclizations.19 Finally, the 2,3 disilylated diene 7h is a
potentially attractive reaction partner in [4+2] cycload-
ditions since the adducts are expected to be prone to
various functionalizations of the disilylated vinylic unit.
1
12. Selected spectroscopy data: 2b; H NMR (CDCl3) l 7.40
(dd, J=7.2 and 1.4 Hz, 2H), 7.27 (t, J=7.2 Hz, 2H), 7.15
(dd, J=7.2 and 1.4 Hz, 1H), 4.10 (ddq, J=5.8, 5.1 and
6.2 Hz, 1H), 3.08 (d J=5.8 Hz, JSn-H=53 Hz, 1H), 2.33
(d, J=5.1 Hz, 1H), 1.54 (m, 6H), 1.35 (m, 6H), 1.23 (d,
J=6.2 Hz, 3H), 1.03 (m, 6H), and 0.91 (t, J=7.3 Hz,
9H); 13C NMR (CDCl3) l 139.29, 128.79, 128.49, 125.75,
70.32, 39.04, 29.06, 27.39, 23.03, 13.67, and 10.50; MS
(EI) m/z 401 (M+−Bu, 6%), 265 (22), 150 (34), 135 (17),
109 (13), 71 (52), and 41 (100). Anal. calcd for
C21H38OSSn: C, 55.15; H, 8.38. Found: C, 55.32; H, 8.46.
1
Z-3b; H NMR (CDCl3) l 7.37–7.16 (m, 5H), 6.22 (dq,
Acknowledgements
J=9.2 and 1.6 Hz, 1H), 5.89 (dq, J=9.2 and 6.7 Hz, 1H),
1.85 (dd, J=6.7 and 1.6 Hz, 3H). E-3b; 1H NMR
(CDCl3) l 7.30 (m, 5H), 6.14 (dq, J=14.8 and 1.3 Hz,
1H), 6.00 (dq, J=14.8 and 6.5 Hz, 1H), and 1.84 (dd,
We thank the Ministerio de Ciencia y Tecnolog´ıa of
Spain for supporting this work (Grant BQU2000-0943).
J=6.5 and 1.3 Hz, 3H). 5b; IR (CCl4) 1735 cm−1 1H
;
NMR (CDCl3) l 7.47–7.19 (m, 5H), 5.10 (dq, J=9.1 and
6.3 Hz, 1H), 4.15 (q, J=7.1 Hz, 2H), 4.14 (q, J=7.0 Hz,
2H), 3.75 (d, J=9.1 Hz, 1H), 1.52 (d, J=6.3 Hz, 3H),
1.27 (t, J=7.1 Hz, 3H), and 1.19 (t, J=7.0 Hz, 3H); 13C
NMR (CDCl3) 169.58, 153.93, 133.27, 132.42, 129.10,
128.40, 73.70, 64.04, 61.35, 55.63, 17.58, 14.14, and 13.92.
Anal. calcd for C15H20O5S: C, 57.67; H, 6.45. Found: C,
57.79; H, 6.38. 2e; 1H NMR (CDCl3) l 7.53–7.14 (m,
10H), 3.88 (dd, J=7.9 and 4.1 Hz, 1H), 3.38 (d, J=4.1
Hz, JSn-H=50 Hz, 1H), 2.04 (d, J=7.9 Hz, 1H), 1.44 (m,
6H), 1.29 (m, 12H), 0.87 (t, J=7.1 Hz, 9H), 0.37 (s, 3H),
and 0.28 (s, 3H); 13C NMR (CDCl3) l 138.74, 137.52,
134.12, 129.04, 128.69, 127.81, 127.44, 127.12, 69.15,
37.40, 29.03, 27.39, 13.67, 10.68, −3.50, and −4.06. Anal.
References
1. Hudrlik, P. F.; Hudrlik, A. M. In Advances in Silicon
Chemistry; Larson, G. L., Ed. a,b-Epoxysilanes. JAI
Press: London, 1993; Vol. 2.
2. Nishida, A.; Masakatsu, S.; Ikegami, S. Tetrahedron Lett.
1981, 22, 4819–4822.
3. Soderquist, J. A.; Lo´pez, C. Tetrahedron Lett. 1991, 32,
6305–6306.
4. (a) Lambert, J. B.; Wang, G.; Teramura, D. H. J. Org.
Chem. 1988, 53, 5422–5428; (b) Lambert, J. B.; Wang, G.
Tetrahedron Lett. 1988, 29, 2551–2554.