1
02
T.J. Wallington et al.rChemical Physics Letters 322 (2000) 97–102
y1
CCSDŽT.rcc-pVTZ result several kcal mol below
References
the MP2 one. Combining the lower estimate for the
energy barrier with the MP2r6-31G structures and
vibrational spectra in a standard transition state the-
w1x M.J. Molina, F.S. Rowland, Nature 249 Ž1974. 810.
UU
w2x J.D. Farman, B.G. Gardiner, J.D. Shanklin, Nature 315 Ž1985.
2
07.
ory treatment w21x, we obtain a first-order rate con-
w3x T.J. Wallington, W.F. Schneider, D.R. Worsnop, O.J. Nielsen,
y10
J. Sehested, W. DeBruyn, J.A. Shorter, Environ. Sci. Tech.
stant for homogeneous decomposition of 2=10
y1
28 Ž1994. 320A.
w4x E.O. Edney, B.W. Gay Jr., D.J. Driscoll, J. Atmos. Chem. 12
s
, far less than the upper limit inferred from the
experiments above. Even allowing for a generous
estimate of possible overestimation of the barrier
height, and for contributions of quantum mechanical
tunneling, it is clear that the rate of homogeneous
Ž1991. 105.
5
w x
T.J. Wallington, M.D. Hurley, J.C. Ball, E.W. Kaiser, Envi-
ron. Sci. Tech. 26 Ž1992. 1318.
w6x E.C. Tuazon, R. Atkinson, J. Atmos. Chem. 17 Ž1993. 179.
w7x A.S. Hasson, I.W.M. Smith, J. Phys. Chem. A 103 Ž1999.
decomposition of CCl OH is slow, and that its life-
3
2
031.
time is quite long. The computational results are
consistent with the upper limits inferred from the
experiments above, and suggest that the lifetime of
w8x G.S. Tyndall, T.J. Wallington, M.D. Hurley, W.F. Schneider,
J. Phys. Chem. 97 1993 1576.
Ž
.
w9x J. Sehested, T.J. Wallington, Environ. Sci. Tech. 27 Ž1993.
1
46.
CCl OH is likely many days.
3
w10x I. Barnes, K.H. Becker, E.H. Fink, A. Reimer, F. Zabel, H.
Niki, Int. J. Chem. Kinet. 15 Ž1983. 631.
w11x T.J. Wallington, S.M. Japar, J. Atmos. Chem. 9 Ž1989. 399.
5
. Conclusion
12
w x
M.W. Schmidt, K.K. Baldridge, J.J. Boatz, S.T. Elbert, M.S.
Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen,
S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J.
Comput. Chem. 14 Ž1993. 1347.
The experimental and computational results pre-
sented here provide a consistent picture of the stabil-
ity and IR spectra of CH ClOH, CHCl OH, and
CCl OH. All three compounds have lifetimes of at
least 100 s Žand probably much longer. with respect
to homogeneous decomposition in the gas phase, but
can decompose rapidly on surfaces.
w13x W.F. Schneider, B.I. Nance, T.J. Wallington, J. Am. Chem.
2
2
Ž
.
Soc. 117 1995 478.
3
w
14 A.P. Scott, L. Radom, J. Phys. Chem. 100 1996 16502.
x Ž .
w15x T.H. Dunning Jr., J. Chem. Phys. 90 Ž1989. 1007.
w16x J.F. Stanton, J. Gauss, J.D. Watts, W.J. Lauderdale, R.J.
Bartlett, ACES II, An Ab Initio Program System, Quantum
Theory Project, University of Florida.
w17x H. Kunttu, M. Dahlqvist, J. Murto, M. R a˜ s a˜ nen, J. Phys.
Chem. 92 Ž1988. 1495.
Acknowledgements
w18x M.C. Lin, J. Phys. Chem. 76 Ž1972. 811.
w19x P. Calza, C. Minero, E. Pelizzetti, Environ. Sci. Technol. 31
Ž1997. 2198.
We thank Willi Nelson ŽBergische Universit ¨a t
Wuppertal. for his help during these experiments.
T.J.W. acknowledges thanks the Alexander von
w20x W.F. Schneider, T.J. Wallington, R.E. Huie, J. Phys. Chem.
1
00 Ž1996. 6097.
w21x K.J. Laidler, Theories of Chemical Reaction Rates, Krieger,
Humboldt ŽAvH. Stiftung for an AvH fellowship.
New York, 1979.