886
L.A. Rivera-Rivera et al. / Inorganica Chimica Acta 357 (2004) 881–887
be much larger than the extent of solvent–W bond making
in the TS. In such cases, the enthalpy of activation values
may be used as estimates of L–W bond enthalpies.
The enthalpies of activation of the system in chloro-
(L)W(CO)3 take place via an initial solvent-assisted
dissociation of [60]fullerene. The activation parameters
and competition ratios values support a dissociative
displacement of [60]fullerene as a better mechanistic
description for the reactions in chlorobenzene and in
toluene.
z
benzene and in toluene (DH ¼ 105ð4Þ and 105(6) kJ/
mol, respectively) are in the ballpark of the reported
values of 63–108 kJ/mol for C –M bond dissociation
60
2
enthalpies of (g -C )M(L) (M ¼ Ni, Pd, Pt; L ¼ PH ,
60
2
3
2
Acknowledgements
olefins) and in (g -C60)W(CO)5 complexes (vide supra).
2
2
In the complex fac-(g -C60)(g -phen)W(CO)3 it seems
that the rigidity of the phen chelate backbone inhibits the
ring-opening pathway. This behavior has been observed
Acknowledgment is made to the Donors of The Pe-
troleum Research Fund, administered by the American
Chemical Society, (ACS-PRF # 36623-B3) and to the
USA National Science Foundation (grant CHE-
0102167) for support of this work. Valuable comments
from Professor Deborah A. Moore are gratefully ac-
knowledged.
2
0
in cis-(g -dipy)W(CO)4 (dipy ¼ 2; 2 -dipyridyl) and cis-
2
(
g -phen)W(CO) complexes [43]. For example, reac-
4
2
tions of cis-(g -dipy)W(CO) with phosphites produce
fac-(g -dipy)(g -L)W(CO) and trans-(g -L) W(CO) ,
while the corresponding reactions of cis-(g -phen)W
CO)4 produce the complex fac-(g -phen)(L)W(CO)3
4
2
1
1
3
2
4
2
2
(
exclusively [43]. The term cis labilization has been coined
to describe the observation that ligands which are weaker
p-acceptors than CO may labilize a ligand-substituted
metal carbonyl complex toward dissociative ligand loss,
preferentially from a cis position relative to the labilizing
ligand [44].
References
[1] D. Dubois, K.M. Kadish, S. Flanagan, R.E. Haufiler, L.P.F.
Chibante, L.J. Wilson, J. Am. Chem. Soc. 113 (1991) 4364.
[
2] D. Dubois, M.T. Jones, K.M. Kadish, J. Am. Chem. Soc. 114
(
1992) 6446.
[
[
3] Y. Ohsawa, T. Saji, J. Chem. Soc. Chem. Commun. 781 (1992).
4] F. Zhou, C. Jeboulet, A.J. Bard, J. Am. Chem. Soc. 114 (1992)
11004.
4
.2. Competition ratios
[
[
[
5] L. Echegoyen, L.E. Echegoyen, Acc. Chem. Res. 31 (1998) 593.
6] L.E. Brus, K. Raghavachari, Chem. Phys. Lett. 125 (1986) 249.
7] Q. Xie, E. P ꢀe rez-Cordero, L. Echegoyen, J. Am. Chem. Soc. 114
The competition ratio (kꢁ3=k4 and kꢁ1=k2) should re-
2
flect the ability of the intermediate species fac-(g -phen)
(
1992) 3978.
2
W(CO) (or fac-(solvent)(g -phen)W(CO) ) to discrimi-
3
3
[8] L. Rivera-Rivera, F. Colon-Padilla, A. Del Toro-Novales, J.E.
Cortes-Figueroa, J. Coord. Chem. 54 (2001) 143.
nate between the incoming L and C60 [45–49]. The sol-
vated intermediate should be more selective than the
electronically unsaturated intermediate [45–49]. These
ratios were estimated from the ratio (slope/intercept) of
the reciprocal plots (for example, slope/intercept ¼ ðkꢁ3=
k3k4Þ=ð1=k3Þ ¼ ðkꢁ3=k4Þ for the reactions in chloroben-
zene. The competition ratio for L ¼ PPh3 (kꢁ3=k4 ¼ 9ð3Þ
at 74.2 °C in chlorobenzene) suggests some degree of se-
lectivity by I toward C . Comparison of this value with
[
9] E.D. Jemmis, M. Manoharan, P.K. Sharma, Organometallics 19
(
2000) 1879.
10] F. Nunzi, A. Sgamellotti, N. Re, C. Floriani, J. Chem. Soc.,
Dalton Trans. 19 (1999) 3487.
[
[
[
11] K.M. Kaddish, R.S. Ruoff, Fullerenes: Chemistry, Physics, and
Technology, Wiley, New York, 2000 (Chapter 4).
12] A.L. Balch, L. Hao, M.M. Olmstead, Angew. Chem. Int. Ed.
Engl. 35 (1996) 188.
[
[
13] P.J. Fagan, J.C. Calabrese, B. Malone, Science 252 (1991) 1160.
14] A.N. Chernega, M.L.H. Green, J. Haggitt, H.H. Stephens, J.
Chem. Soc., Dalton Trans. 755 (1998).
B
60
the corresponding value for W(CO) (k =k ¼ 1:09 ð1Þ
5
ꢁ3
4
3
9 °C in CS2), for which no solvent involvement was
[15] J.T. Park, H. Song, J.J. Cho, M.K. Chung, J.H. Lee, I.H. Suh,
Organometallics 17 (1998) 227.
suggested [23], supports some degree of solvent involve-
ment in the TS2 of path B. The observation that the ratio
values are nearly independent of L (for L ¼ P(Cy)3
[
[
[
[
16] J.R. Rogers, D.S. Marynick, Chem. Phys. Lett. 205 (1993) 97.
17] R.C. Haddon, J. Comp. Chem. 19 (1998) 139.
18] E.D. Jemmis, M. Manoharan, Curr. Sci. 76 (1999) 1122.
19] H.-F. Hsu, T.E. Albretcht-Schmitt, S.R. Wilson, J.R. Shapley,
Organometallics 17 (1998) 1756.
(
kꢁ3=k4 ¼ 12ð3Þ at 74.2 °C in chlorobenzene) and inde-
3 4
pendent of the temperature (for L ¼ PPh (k =k ¼ 9:0
ꢁ3
[
20] K. Tang, S. Zheng, X. Jin, H. Zeng, Z. Gu, X. Rhou, Y. Tang, J.
Chem. Soc., Dalton Trans. 3585 (1997).
ð7Þ at 64.2 °C in chlorobenzene) suggests that indeed the
TS involves a larger extent of W–C bond-breaking than
2
60
[
[
21] L.-C. Song, Y.-H. Zhu, Q.-M. Hu, J. Chem. Res. (S) 56 (1999).
22] F. Nunzi, A. Sgamellotti, N. Re, C. Floriani, Organometallics 19
solvent–W bond-making. Thus, it seems that TS2 should
resemble the electronically unsaturated intermediate IB.
(
2000) 1628.
[
23] L.A. Rivera-Rivera, F.D. Colon-Padilla, Y. Ocasio-Delgado, J.
Martinez-Rivera, S. Mercado-Feliciano, C.M. Ramos, J.E. Cor-
tes-Figueroa, Inorg. React. Mech. 4 (2002) 49.
5
. Conclusions
[
24] Y. Ocasio-Delgado, L.A. Rivera-Rivera, G. Crespo-Roman, J.E.
Cort ꢀe s-Figueroa, Inorg. React. Mech. (2003), in press.
25] K.J. Asali, G.J. van Zyl, G.R. Dobson, Inorg. Chem. 27 (1988)
3314.
The ligand-[60]fullerene exchange reactions on
2
[
2
2
fac-(g -C )(g -phen)W(CO) producing fac-(g -phen)
6
0
3