Page 5 of 6
ACS Catalysis
Hydrogen Sulfide Storage: Probing Conditions for Sulfide Release
[11] Park, C.-M.; Johnson, B. A.; Duan, J.; Park, J.-J.; Day, J. J.; Gang,
D.; Qian, W.-J.; Xian, M. 9 ‑Fluorenylmethyl (Fm) Disulfides:
Biomimetic Precursors for Persulfides. Org. Lett. 2016, 18, 904-
907.
from Hydrodisulfides. J. Am. Chem. Soc. 2014, 136, 10573-10576;
(e) Bełtowski, J. Hydrogen Sulfide in Pharmacology and Medicine –
An Update. Pharmacological Reports 2015, 67, 647-658.
1
2
3
4
5
6
7
8
9
[6] (a) Block, E.; Ahmad, S.; Catalfamo, J. L.; Jain, M. K.; Apitz-
Castro, R. Antithrombotic Organosulfur Compounds from Garlic:
Structural, Mechanistic, and Synthetic Studies. J. Am. Chem. Soc.
1986, 108, 7045-7055; (b) Mussinan, C. J.; Keelan, M. E. Sulfur
Compounds in Foods. ACS Symposium Series, American Chemical
Society: Washington DC, 1994; Vol. 564, PP 1-6.
[7] Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E.
Thienoacene-Based Organic Semiconductors. Adv. Mater. 2011, 23,
4347-4370.
[12] (a) Xiao, X.; Feng, M.; Jiang, X. New Design of a Disulfurating
Reagent: Facile and Straightforward Pathway to Unsymmetrical
Disulfanes by Copper-Catalyzed Oxidative Cross-Coupling. Angew.
Chem. Int. Ed. 2016, 55, 14121-14125; (b) Dai, Z.; Xiao, X.; Jiang, X.
Nucleophilic Disulfurating Reagents for Unsymmetrical Disulfides
Construction via Copper-catalyzed Oxidative Cross Coupling.
Tetrahedron 2017, 73, 3702-3706; (c) Xiao, X.; Xue, J.; Jiang, X.
Polysulfurating Reagent Design for Unsymmetrical Polysulfide
Construction. Nat. Commun. 2018, 9, 2191.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[8] (a) Jiang, C.-S.; Müller, W. E. G.; Schröder, H. C.; Guo, Y.-W.
Disulfide- and Multisulfide-Containing Metabolites from Marine
Organisms. Chem. Rev. 2012, 112, 2179-2207; (b) Nicolaou, K. C.;
Lu, M.; Totokotsopoulos, S.; Heretsch, P.; Giguère, D.; Sun, Y.-P.;
Sarlah, D.; Nguyen, T. H.; Wolf, I. C.; Smee, D. F.; Day, C. W.; Bopp, S.;
Winzeler, E. A. Synthesis and Biological Evaluation of Epidithio-,
Epitetrathio- and Bis-(Methylthio)diketopiperazines. Synthetic
Methodology, Enantioselective Total Synthesis of Epicoccin G, 8,8ʹ-
epi-ent-Rostratin B, Gliotoxin, Gliotoxin G, Emethal-licin E and
Haematocin, and Discovery of New Antiviral and Antimalarial
Agents. J. Am. Chem. Soc. 2012, 134, 17320-17332; (c) Wang, M.;
Jiang. X. Sulfur-Sulfur Bond Construction. Top Curr. Chem, 2018,
376, 14.
[9] (a) Kularatne, S. A.; Venkatesh, C.; Santhapuram, H.-K. R.;
Wang, K.; Vaitilingam, B.; Henne, W. A.; Low, P. S. Synthesis and
Biological Analysis of Prostate-Specific Membrane Antigen-
Targeted Anticancer Prodrugs. J. Med. Chem. 2010, 53, 7767-7777;
(b) Liu, H.; Jiang. X. Transfer of Sulfur: From Simple to Diverse.
Chem. Asian J. 2013, 8, 2546–2563.
[10] (a) Barton, D. H. R.; Hesse, R. H.; O'Sullivan, A. C.; Pechet, M.
M. A New Procedure for the Conversion of Thiols into Reactive
Sulfenylating Agents. J. Org. Chem. 1991, 56, 6697-6702; (b)
Brzezinska, E.; Ternay, A. L. Disulfides. 1. Syntheses Using 2,2’-
Dithiobis(benzothiazole). J. Org. Chem. 1994, 59, 8239-8244; (c)
Arisawa, M.; Yamaguchi, M. Rhodium-Catalyzed Disulfide Exchange
Reaction. J. Am. Chem. Soc. 2003, 125, 6624-6625; (d) Bao, M.;
Shimizu, M. N-Trifluoroacetyl Arenesulfenamides, Effective
Precursors for Synthesis of Unsymmetrical Disulfides and
Sulfenamides. Tetrahedron 2003, 59, 9655-9659; (e) Hunter, R.;
Caira, M.; Stellenboom, N. Inexpensive, One-Pot Synthesis of
Unsymmetrical Disulfides Using 1-Chlorobenzotriazole. J. Org.
Chem. 2006, 71, 8268-8271; (f) Musiejuk, M.; Witt, D. Recent
Developments in the Synthesis of Unsymmetrical Disulfanes
(Disulfides). A Review. Org. Prep. Proced. Int. 2015, 47, 95-131; (g)
Xiao, X.; Feng, M.; Jiang, X. Transition-metal-free Persulfuration to
Construct Unsymmetrical Disulfides and Mechanistic Study of the
Sulfur Redox Process. Chem. Commun. 2015, 51, 4208-4211; (h)
Mai, S.; Song, Q. Divergent Synthesis of Disulfanes and
Benzenesulfonothioates Bearing 2-Aminofurans From N-
Tosylhydrazone-Bearing Thiocarbamates. Angew. Chem. Int. Ed.
2017, 56, 7952-7957; (i) Taniguchi, N. Unsymmetrical Disulfide
and Sulfenamide Synthesis via Reactions of Thiosulfonates with
Thiols or Amines. Tetrahedron 2017, 73, 2030-2035; (j) Qiu, X.;
Yang, X.; Zhang, Y.; Song, S.; Jiao, N. Efficient and Practical Synthesis
of Unsymmetrical Disulfides via Base-catalyzed Aerobic Oxidative
Dehydrogenative Coupling of Thiols. Org. Chem. Front. 2019, 6,
2220-2225.
[13] Wang, W.; Lin, Y.; Ma, Y.; Tung, C.-H.; Xu, Z. Cu-Catalyzed
Electrophilic Disulfur Transfer: Synthesis of Unsymmetrical
Disulfides. Org. Lett. 2018, 20, 3829-3832.
[14] (a) Cabal, M. P.; Coleman, R. S.; Danishefsky, S. J. Total
Synthesis of Calicheamicinone: A Solution to the Problem of the
Elusive Urethane. J. Am. Chem. Soc. 1990, 112, 3253-3255; (b)
Haseltine, J. N.; Cabal, M. P.; Mantlo, N. B.; Iwasawa, N.; Yamashita,
D. S.; Coleman, R. S.; Danishefsky, S. J.; Schulte, G. K. Total Synthesis
of Calicheamicinone: New Arrangements for Actuation of the
Reductive Cycloaromatization of Aglycon Congeners. J. Am. Chem.
Soc. 1991, 113, 3850-3866; (c) Hitchcock, S. A.; Chu-Moyer, M. Y.;
Boyer, S. H.; Olson, S. H.; Danishefsky, S. J. A Remarkable
Glycosylation Reaction: The Total Synthesis of Calicheamicin γ1. J.
Am. Chem. Soc. 1995, 117, 5750-5756; (d) Nicolaou, K. C.; Li, R.; Lu,
Z.; Pitsinos, E. N.; Alemany, L. B. Total Synthesis and Full Structural
Assignment of Namenamicin. J. Am. Chem. Soc. 2018, 140, 8091-
8095.
[15] Ouyang, K.; Xi, Z. Roles of Bases in Transition-Metal
Catalyzed Organic Reactions. Acta Chim. Sinica 2013, 71, 13-25.
[16] Po, R.; Bianchi, G.; Carbonera, C.; Pellegrino, A. “All That
Glisters Is Not Gold”: An Analysis of the Synthetic Complexity of
Efficient Polymer Donors for Polymer Solar Cells. Macromolecules
2015, 48, 453-461.
[17] Marsden, S. Boronic Acids. Preparation and Applications in
Organic Synthesis and Medicine. Herausgegeben von Dennis G. Hall.
Angew. Chem., Int. Ed. 2006, 118, 2057−2058.
[18] (a) Savarin, C.; Srogl, J.; Liebeskind, L. S. A Mild, Nonbasic
Synthesis of Thioethers. The Copper-Catalyzed Coupling of Boronic
Acids with N-Thio(alkyl, aryl, heteroaryl)imides. Org. Lett. 2002, 4,
4309-4312; (b) Casitas, A.; Ribas, X. The Role of Organometallic
Copper(III) Complexes in Homogeneous Catalysis. Chem. Sci. 2013,
4, 2301-2318; (c) Zhang, Q.; Liu, Y.; Wang, T.; Zhang, X.; Long, C.;
Wu, Y.-D.; Wang, M.-X. Mechanistic Study on Cu(II)-Catalyzed
Oxidative Cross-Coupling Reaction between Arenes and Boronic
Acids under Aerobic Conditions. J. Am. Chem. Soc. 2018, 140, 5579-
5587; (d) Zhu, F.; Miller, E.; Zhang, S.; Yi, D.; O’Neill, S.; Hong, X.;
Walczak, M. A. Stereoretentive C(sp3)−S Cross-Coupling. J. Am.
Chem. Soc. 2018, 140, 18140-18150.
[19] (a) Smith, G. B.; Dezeny, G. C.; Hughes, D. L.; King, A. O.;
Verhoeven, T. R., Mechanistic Studies of the Suzuki Cross-Coupling
Reaction. J. Org. Chem. 1994, 59, 8151-8156; (b) Briggs, B. D.;
Pekarek, R. T.; Knecht, M. R., Examination of Transmetalation
Pathways and Effects in Aqueous Suzuki Coupling Using
Biomimetic Pd Nanocatalysts. J. Phys. Chem. C 2014, 118, 18543-
18553; (c) Glenadel, Q.; Alazet, S.; Tlili, A.; Billard, T., Mild and Soft
Catalyzed Trifluoromethylthiolation of Boronic Acids: The Crucial
Role of Water. Chem. Eur. J. 2015, 21, 14694-1469.
ACS Paragon Plus Environment