7434
K. Ikeda et al. / Tetrahedron Letters 48 (2007) 7431–7435
8. Ando, H.; Koike, Y.; Ishida, H.; Kiso, M. Tetrahedron
Lett. 2003, 44, 6883.
9. Adachi, M.; Tanaka, H.; Takahashi, T. Synlett 2004,
609.
10. Tanaka, K.; Goi, T.; Fukase, K. Synlett 2005, 2958.
11. Yu, C.-S.; Niikura, K.; Lin, C.-C.; Wong, C.-H. Angew.
Chem., Int. Ed 2001, 40, 2900.
Removal of the N-Boc group of 4b with TFA–CH2Cl2
(1:4) or Yb(OTf)3–SiO2 gave 4c in 96% or 84% yield.
Mild and selective deprotection of the N-Boc group of
4e, including an acid-sensitive isopropylidene function
with a catalytic amount of Yb(OTf)3–SiO2, proceeded
smoothly to give 4f in 81% yield (Scheme 2).
23
12. Sherman, A. A.; Yudina, O. N.; Shaskov, A. S.; Menshov,
V. M.; Nifant’ev, N. E. Carbohydr. Res. 2001, 330, 445.
13. Fujita, S.; Numata, M.; Sugimoto, M.; Tomita, K.;
Ogawa, T. Carbohydr. Res. 1992, 228, 347.
N,N-Boc,Ac analogues of sialic acid are of great impor-
tance for synthesizing N-substituted sialosides.12 Thus,
selective N,O-deacetylation of 4b with sodium methox-
ide and successive acetylation with Ac2O and pyridine
gave N-Boc derivative 4g in 75% yield over two steps,
which was deprotected by TFA and subsequently sub-
mitted to N-acylation of the resulting free amino group
with acetyl glycoloyl chloride and pyridine to give the
corresponding N-acetylglycolyl glycoside 4h in 90%
yield over two steps (see Scheme 3).
14. (a) Ikeda, K.; Sugiyama, Y.; Tanaka, K.; Sato, M. Bioorg.
Med. Chem. Lett. 2002, 12, 2309; (b) Ikeda, K.; Torisawa,
Y.; Nishi, T.; Minamikawa, J.; Tanaka, K.; Sato, M.
Bioorg. Med. Chem. 2003, 11, 3073; (c) Ikeda, K.; Fukuyo,
J.; Sato, K.; Sato, M. Chem. Pharm. Bull. 2005, 53, 1490.
15. Synthesis and characterization of 2b: A mono-N-acetyl-
ated derivative 2a (130 mg, 0.188 mmol) was dissolved in
isopropenyl acetate (4 mL) and TsOH monohydrate
(7.5 mg, 0.05 mmol) was added. The reaction mixture
was stirred at 65 °C for 17 h, then neutralized with Et3N
and evaporated to dryness. The crude product purified by
silica gel column chromatography using AcOEt–n-hexane
(1:2) gave 2b (123 mg, 89%). 1H NMR (500 MHz, CDCl3)
d: 0.87 (t, 3H, J = 7.0 Hz, –CH3), 1.26–1.31 (m, 18H,
–(CH2)9–), 1.50–1.54 (m, 2H, –SCH2CH2–), 1.97, 2.02,
2.05, 2.11 (s, each 3H, OAc), 2.28, 2.40 (each 3H, s, NAc2),
2.49–2.54 (m, 2H, –SCH2CH2–), 2.67 (dd, 1H, J3eq,4 = 5.2,
J3ax,3eq = 13.7 Hz, H-3eq), 3.79 (s, 3H, OCH3), 4.14–4.22
(m, 2H, H-5, H-9a), 4.66 (dd, 1H, J9b,8 = 2.3, J9a,9b = 12.6
Hz, H-9b), 5.10–5.15 (m, 1H, H-8), 5.24 (dd, 1H,
J7,6 = 1.7, J7,8 = 4.0 Hz, H-7), 5.40 (dd, 1H, J6,5 = 10.0,
J6,7 = 2.0 Hz, H-6), 5.79 (ddd, 1H, J4,5 = J4,3ax = 10.9 Hz,
H-4). Positive FAB MS m/z 718 [M+H]+.
16. Synthesis and characterization of 2c: A solution of 2a
(514 mg, 0.76 mmol), Boc2O (498 mg, 2.28 mmol), and 4-
dimethylaminopyridine (DMAP) (47 mg, 0.38 mmol) in
dry THF (15 mL) was refluxed for 4 h under Ar. The
resulting mixture was concentrated in vacuo. The crude
product purified by silica gel column chromatography
using AcOEt–n-hexane (1:2) gave 2c (583 mg, 99%). 1H
NMR (500 MHz, CDCl3) d: 0.88 (t, 3H, J = 7.0 Hz,
–CH3), 1.24–1.26 (m, 18H, –(CH2)9–), 1.48–1.52 (m, 2H,
–SCH2CH2–), 1.66 (s, 9H, NBoc), 1.95, 2.03, 2.05, 2.07 (s,
each 3H, OAc), 2.35 (s, 3H, NAc), 2.51–2.58 (m, 3H,
–SCH2CH2–, H-3eq), 3.81 (s, 3H, OCH3), 4.19 (dd, 1H,
J9a,8 = 7.9, J9a,9b = 12.8 Hz, H-9a), 4.81 (m, 2H, H-5, H-
3. Conclusion
In summary, we have developed an efficient method to
synthesize a-sialoglycosides by using sialyl donor 2c in
CPME. It should be noted that the combination of both
the long-range assistance20 of the bulky 5-N-Boc group
of 2c and the solvent effect of CPME is critical for effi-
cient a-sialylation. N,N-Boc,Ac glycoside 4b was suc-
cessfully transformed into the corresponding N-acetyl
glycolyl sialoglycoside 4h.
We are currently applying this methodology to the syn-
thesis of other oligosaccharides.
Acknowledgments
This work was financially supported in part by a Grant-
in-Aid for Scientific Research No. 19590103 from the
Ministry of Education, Science, Sports, and Culture of
Japan. The authors also thank MARUKIN BIO, INC.
(Kyoto, Japan) for the generous gift of Neu5Ac. CPME
used in this work was a generous gift from ZEON Cor-
poration, R&D Center.
9b), 5.10–5.13 (m, 1H, H-6, H-8), 5.30 (dd, 1H, J7,6
=
J7,8 = 2.4 Hz, H-7), 5.66 (ddd, 1H, J4,5 = J4,3ax = 10.9 Hz,
J4,3eq = 2.5 Hz, H-4). Positive FAB MS m/z 798
[M+Na]+.
References and notes
1. Rosenberg, A. Biology of Sialic Acids; Plenum: New York,
London, 1995.
2. Boons, G.-J.; Demchenko, A. V. Chem. Rev. 2000, 100,
4539.
3. Hasegawa, A. In Modern Methods in Carbohydrate Syn-
thesis; Khan, S., O’Neill, R., Eds.; Harwood Academic:
New York, 1996; pp 277–300.
4. (a) Matsui, H.; Furukawa, J.-I.; Awano, T.; Nishi, N.;
Sakairi, N. Chem. Lett. 2000, 326; (b) Node, M.; Kumar,
K.; Nishide, K.; Ohsugi, S.; Miyamoto, T. Tetrahedron
Lett. 2001, 42, 9207.
17. Yamada, K.; Fujita, E.; Nishimura, S.-I. Carbohydr. Res.
1998, 305, 443.
18. Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.;
Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121,
734.
19. Hasegawa, A.; Nagahama, T.; Ohki, H.; Hotta, K.;
Ishida, H.; Kiso, M. J. Carbohydr. Chem. 1991, 10, 493.
20. Tokimoto, H.; Fujimoto, Y.; Fukase, K.; Kusumoto, S.
Tetrahedron: Asymmetry 2005, 16, 441.
21. Representative procedure for glycosylation (Table 1, entry
9):
A mixture of the glycosyl donor 2c (39 mg,
5. Matsuoka, K.; Onaga, T.; Mori, T.; Sakamoto, J.-I.;
Koyama, T.; Sakairi, N.; Hatano, K.; Terunuma, D.
Tetrahedron Lett. 2004, 45, 9383.
0.050 mmol), glycosyl acceptor 3b (20 mg, 0.075 mmol),
˚
and 4 A molecular sieves (0.10 g) in CPME (2.0 mL) was
stirred under argon for 6 h at room temperature. NIS
(34 mg, 0.15 mmol) and TfOH (7.5 mg, 0.05 mmol) were
added to the reaction mixture at À40 °C. The reaction
mixture was stirred for 16 h at the same temperature in the
dark. Upon completion, the reaction solution was diluted
6. (a) Demchenko, A. V.; Boons, G.-J. Tetrahedron Lett.
1998, 39, 3065; (b) David, C.; Wenju, L. Org. Lett. 2006,
959.
7. Meo, D.; Demchenko, A. V.; Boons, G.-J. J. Org. Chem.
2001, 66, 5490.