Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Chemical Communications
J. Z. Liu, L.-J. Wan, W. Zhu and G. Li, ADdOv.I:F1u0n.1c0t3.9M/Ca7tCeCr.0,4270919A5,
25, 6009-6017.
15. Y.-H. Kang, X.-D. Liu, N. Yan, Y. Jiang, X.-Q. Liu, L.-B. Sun and
J.-R. Li, J. Am. Chem. Soc., 2016, 138, 6099-6102.
16. X. Qiu, W. Zhong, C. Bai and Y. Li, J. Am. Chem. Soc., 2016,
138, 1138-1141.
Scheme 1. Cu(I)-Catalyzed Azide-Alkyne Cycloaddition (CuAAC).
We have developed a photoinduced Cu2+ to Cu+/Cu0 reduction
system by employing Cu-cuboctahedral MOPs. The MOPs are ideal
compounds to study photoinduced Cu2+ reduction processes
because desired functional groups can be introduced relatively easily
into the system. The MOPs were functionalized by the triplet
quencher coumarin, yielding a relatively long lifetime of the Cu+
states, even during continuous UV irradiation. The distance between
the benzophenone coordinated to Cu+ and coumarin was
manipulated by changing the length of the alkyl groups on the
organic linkers. When the distance is less, Cu+ reduction is
significantly delayed due to an efficient transfer of energy from
benzophenone to coumarin. The reduction and oxidation between
the Cu2+ and Cu+ oxidation states in the Coumarin-MOPs were
reversible by alternating UV irradiation and air exposure, presumably
until the MOP structures became degraded. Finally, we successfully
applied the Coumarin-MOP photoinduced catalysts to the CuAAC.
Stabilizing the Cu+-MOPs and Cu0 nanoparticles generated by the
process developed in this report are currently being explored.
This work was partly supported by the National Research
Foundation of Korea (NRF) and grants funded by the Korean
government (Nos. NRF-2016R1C1B2009987 and NRF-
2016M2B2A9912217). J. Park thanks the support from the Faculty
Start-up Fund (2017010035) of the Daegu Gyeongbuk Institute of
Science and Technology (DGIST).
17. J.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena and
H.-C. Zhou, Nat. Commun., 2013,
18. K. Wu, K. Li, Y.-J. Hou, M. Pan, L.-Y. Zhang, L. Chen and C.-Y.
Su, Nat. Commun., 2016, , 10487.
4, 1538.
7
19. D. Zhao, D. Yuan, R. Krishna, J. M. van Baten and H.-C. Zhou,
Chem. Commun., 2010, 46, 7352-7354.
20. W. Lu, D. Yuan, A. Yakovenko and H.-C. Zhou, Chem.
Commun., 2011, 47, 4968-4970.
21. D. Zhao, S. Tan, D. Yuan, W. Lu, Y. H. Rezenom, H. Jiang, L.-
Q. Wang and H.-C. Zhou, Adv. Mater., 2011, 23, 90-93.
22. K. Sarkar, M. Paul and P. Dastidar, Chem. Commun., 2016,
52, 13124-13127.
23. J. Wang, C. He, P. Wu, J. Wang and C. Duan, J. Am. Chem.
Soc., 2011, 133, 12402-12405.
24. L. Zhao, Y. Chu, C. He and C. Duan, Chem. Commun., 2014,
50, 3467-3469.
25. A. Cao, W. Zhu, J. Shang, J. H. Klootwijk, E. J. R. Sudhölter, J.
Huskens and L. C. P. M. de Smet, Nano Lett., 2016, DOI:
10.1021/acs.nanolett.6b02360.
26. M. Jung, H. Kim, K. Baek and K. Kim, Angew. Chem. Int. Ed.,
2008, 47, 5755-5757.
27. Q.-G. Zhai, C. Mao, X. Zhao, Q. Lin, F. Bu, X. Chen, X. Bu and
P. Feng, Angew. Chem. Int. Ed., 2015, 54, 7886-7890.
28. V. Brega, M. Zeller, Y. He, H. Peter Lu and J. K. Klosterman,
Chem. Commun., 2015, 51, 5077-5080.
29. N. Hosono, M. Gochomori, R. Matsuda, H. Sato and S.
Kitagawa, J. Am. Chem. Soc., 2016, 138, 6525-6531.
30. M. Han, R. Michel, B. He, Y.-S. Chen, D. Stalke, M. John and
G. H. Clever, Angew. Chem. Int. Ed., 2013, 52, 1319-1323.
31. J. Park, L.-B. Sun, Y.-P. Chen, Z. Perry and H.-C. Zhou, Angew.
Chem. Int. Ed., 2014, 53, 5842-5846.
32. J. W. Petr Klán, Photochemistry of Organic Compounds:
From Concepts to Practice, Wiley, 2009.
33. V. Blanco, D. A. Leigh and V. Marcos, Chem. Soc. Rev., 2015,
44, 5341-5370.
References
1.
2.
3.
4.
N. Ahmad, A. H. Chughtai, H. A. Younus and F. Verpoort,
Coord. Chem. Rev., 2014, 280, 1-27.
M. Han, D. M. Engelhard and G. H. Clever, Chem. Soc. Rev.,
2014, 43, 1848-1860.
Z. Lu, C. B. Knobler, H. Furukawa, B. Wang, G. Liu and O. M.
Yaghi, J. Am. Chem. Soc., 2009, 131, 12532-12533.
J.-R. Li, A. A. Yakovenko, W. Lu, D. J. Timmons, W. Zhuang,
D. Yuan and H.-C. Zhou, J. Am. Chem. Soc., 2010, 132, 17599-
17610.
34. A. J. Teator, D. N. Lastovickova and C. W. Bielawski, Chem.
Rev., 2016, 116, 1969-1992.
5.
6.
7.
8.
9.
Y.-T. Zhang, X.-L. Wang, S.-B. Li, Y.-R. Gong, B.-Q. Song, K.-Z.
Shao and Z.-M. Su, Chem. Commun., 2016, 52, 9632-9635.
N. Ahmad, H. A. Younus, A. H. Chughtai and F. Verpoort,
Chem. Soc. Rev., 2015, 44, 9-25.
H. Vardhan, M. Yusubov and F. Verpoort, Coord. Chem. Rev.,
2016, 306, Part 1, 171-194.
M. J. Prakash and M. S. Lah, Chem. Commun., 2009, DOI:
10.1039/B902988E, 3326-3341.
M. H. Alkordi, J. L. Belof, E. Rivera, L. Wojtas and M.
35. T. R. Cook, Y.-R. Zheng and P. J. Stang, Chem. Rev., 2013, 113
,
734-777.
36. T.-H. Chen, L. Wang, J. V. Trueblood, V. H. Grassian and S. M.
Cohen, J. Am. Chem. Soc., 2016, 138, 9646-9654.
37. R. W. Larsen, J. Am. Chem. Soc., 2008, 130, 11246-11247.
38. L. Harmand, S. Cadet, B. Kauffmann, L. Scarpantonio, P.
Batat, G. Jonusauskas, N. D. McClenaghan, D. Lastécouères
and J.-M. Vincent, Angew. Chem. Int. Ed., 2012, 51, 7137-
7141.
39. R. Beniazza, N. Bayo, F. Molton, C. Duboc, S. Massip, N.
McClenaghan, D. Lastécouères and J.-M. Vincent, Beilstein J.
Org. Chem., 2015, 11, 1950-1959.
Eddaoudi, Chem. Sci., 2011, 2, 1695-1705.
10. T. D. Hamilton, G. S. Papaefstathiou, T. Friščić, D.-K. Bučar
and L. R. MacGillivray, J. Am. Chem. Soc., 2008, 130, 14366-
14367.
11. J.-R. Li and H.-C. Zhou, Nat. Chem., 2010, 2, 893-898.
12. Y. Li, D. Zhang, F. Gai, X. Zhu, Y.-n. Guo, T. Ma, Y. Liu and Q.
Huo, Chem. Commun., 2012, 48, 7946-7948.
40. B. J. Adzima, Y. Tao, C. J. Kloxin, C. A. DeForest, K. S. Anseth
and C. N. Bowman, Nat. Chem., 2011, 3, 256-259.
41. L. Liang and D. Astruc, Coord. Chem. Rev., 2011, 255, 2933-
2945.
13. L.-B. Sun, J.-R. Li, W. Lu, Z.-Y. Gu, Z. Luo and H.-C. Zhou, J.
Am. Chem. Soc., 2012, 134, 15923-15928.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins